DYNAMIC ANALYSIS OF
FEEDFORWARD NEURAL NETWORKS
USING SIMULATED AND MEASURED DATA .

THESIS

VS g L Gregory L. Tarr
; o Captain, USAF

b _AFIT/GE/ENG/38D-S4 __ ______._.

TR e 27 DISTRIBUTION STATEMENT & } . = e
N A’mond for public relecset ST - e
Distributica Unhnhod 7

' “: ~.DEPARTMENT OF THE AR FORCE .‘ S -

- ?.":’.‘ ol
-’

T T T ARUNVERSRY

AR FORCE INSTITUTE OF TECHNOLOGY \

Wﬁﬁt&mﬁmm.dﬁo‘-

oA <« 1™ 107

e
[S

. -

~ e PR, . o

freA '"f‘*f"‘-‘kv N e v el

\ b
—_— s e

Ly araas (ot o =

AFIT/GE/ENG,88D-54

DYNAMIC ANALYSIS OF N
FEEDFORWARD NEURAL NETWORKS
USING SIMULATED AND MEASURED DATA
THESIS Accesion For = ,
NTIS CRas) “"“d"‘ —
Gregory L. Tarr e 5
C‘pt‘ino USAF ST"C - .' e ' ! ' ‘
dus, o
AFIT/GE/ENG/88D-54 S
8y o
O, o ,
_——'&...,.:‘ C -
Dist | e e
R4 ';...n ‘
Al |

DTC
- Rare

Iy
1
P
i
PN

iy

, JAN 1

Approved for public release; distribution unlimited

Bl .,

L . LI

i

»

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

m

A T SO RE e e e~ me - e b= Amama e e

AFIT/GE/ENG/83D-54

DYNAMIC ANALYSIS OF
FEEDFORWARD NEURAL NETWORKS
' USING SIMULATED AND MEASURED DATA

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology.
Air University
In Partial Fulfiliment of the

Requirements for the Degree of
Master of Science in Electrical Engineering

Gregory L. Tarr, B.S.E.E

Captain, USAF
’
December 1988
»
Approved for public release; distribution unlimited
)

A R R ee) e

AL L. Ll Clal Y

K

r

VT g g s o e . L

[BTN LT LT L T L e

Preface

The days when a single researcher, working alone in a laboratory could make
great contributions to his or her field have past. Those days are part of a bygone era
or perhaps never existed at all. Great accomplishment today is the resuit of team
efforts, cach individual striving to make a contributiou by fitting a small piece into a
larger puzzle. This work contains the small piece of the puzzle | have worked on. Such
work would not be meaningful cr useful without strong leadership and direction from
real giants. Dr. Steven K. Rogers, Dr. Matthew Kabrisky and Major Pkil Amburn
provided that leadership. I would like to acknowledge my appreciation for their help
and support. Many thanks to my thesis advisor, Dr. Steven K. Rogers, for his
encouragement and enthusiasm. | would also like to thank Dr. Matthew Kabrisky
and Dr. Phil Amburn for their assistance and advice throughout the research effort.

Sir Isaac Newton once said “If I have seen farther than other men it is because
I have stood on the shoulders of giants™. If I have seen at all, it is because I peered

over the shoulders of giants.

Gregory L. Tarr

| -

Al

N © L I | A

[1 | SN

Table of Contents
Page
Preface e ii
Tableof Contents00, iii
Listof Figures vii ﬂ
List of Tables « . . o . oo\t e viii N
Abstract e e e e ix ﬂ
L Imtroduction o i i
11 Background 3 =
12 Problem 5 |
13 Approach)
II. LiteratureReview, 7 #
2.1 Historical Perspective. 7]
2.2 Natural vs Artificial Intelligmnee 8 :
23 TheNeuror 9 “‘
2.4 The Neural Netwotk Node 10 i
2.5 Artificial Neural Networks 12
2.6 Unsupervised Learning 14 .
2.7 Kohonen Feature Maps 14
28 Svpervised Learning 15
2.9 The Jingle Laver Perceptron 13 §
2.10 The Disjunctive Learning Region Problem 16 -
iii
|

111

Iv.

2.11 Multilayer Perceptron

2.12 Counterpropagation . .
2.13 Summary

....................

....................

The Neural Network Analysis Environment

3.1 Software Design
3.2 Initialization Module .

....................

....................

321 Initialization and Declaration of the Net
3.2.2 Initialization of the Video Display
33 TheMain Programloop

3.3.1 Makeinput . .

....................

333 MeasuredData

3.3.4 General Purpose Functions
3.3.5 The Fourier filterproblem
3.3.6 PROPAGATE - Usingthenet

3.3.7 TRAINNET -
3.38 CHECKERRORS - Checking performance of the net.

3.4 Program control. . . .

3.4.1 Evert Driven

Teaching themet.

Menuc.0....

342 DISPLAYNET

3.4.3 SHOWNET .

Data Analysis
4.1 Introduction.

4.2 Error Surface Analysis

....................

....................

....................

....................

....................

4.2.1 Error Reduction by Back Propagation of Errors .

iv

33
33

35
35
35
36

—— ik

Page

4.2.2 A Simple Classification Problem 36

423 Self-Organizing Nodes 43

424 Results....... 44

4.3 Feedforw.. i Networks as Fourier Fileers 45
4.3.1 Making the Input and Qutput Vectors 46

432 Results. 47

4.4 Self-Organizationof Data 49
44.1 Kohonen Self-organization 50

4.4.2 Kohonen Self-Organization and Simulated Data . 50

4.4.3 Kohonen Self-Organization and Measured Data . 53

4.5 Back PropagationofError 54
4.5.1 Classical Analysis for Pattern Recognition 56

4.5.2 Neural Network Pruning 59

4.6 Counterpropagation. 61
46.1 Conscience.oouo.... 63

4.6.2 Weaknesses of Counterpropagation 55

4.7 TheHybrid Network 66
48 Summary e 71
V. Recommendation and Conclusions 74
5.1 Graphics as an AnalysisTool 74
5.2 Criterion for measuringerror 75
5.3 Determining Network Size and Training Time 76
5.4 Application of the Hybrid Network 78
541 Summary 79

5.5 Recommendations. 79

™

Appendix A. Ruck Data Analysis

A.l1 BackpropagationRules
A.2 Counter Propagation
A.3 Hybrid Propagation.
Ad SUMMALY ot i e e e e e e

Appendix B. Roggemann Data Apalysis

B.1 Target/Non-Target Classification
B.2 Backward Propagation Rules
B.3 Counter Propagation
B.4 Hybrid Propagation.
B.5 Target IdentificationData

Appendix C. Computer Source Code

..

84
85
86
87

List of Figures

Figure Page

1. ANeural NetworkNode 11

. 2. The Disjoint Region Proklem 17

- 3. Neural Network Fourier Filter 3

. 4. Simple Neuron Problem 37

5. Six Point Error Surface: LowEta 33

6. Six Point Error Surface: LargeEta 39

7. Six Point Error Surface: Low Momentem 40

8. Six Point Error Surface: Large Momentum 41

9. Second Order Algorithm 42

10. Second Order Algorithm 43

11. Fourier Filter Neural Network i6

. 12. Neural Network Fourier Filter 48

13. Gaussian DistributionoveraSquare 52

14. Gaussian DistributionoveraCross 53

15. Kohonen Mapof RuckData. 55

16. Disjoint and Ambiguous Decision Regions 58

17. Counterpropagationc0uivuieons... 62

18. TheHybrid Network 67

19. Hybrid Propagation Enviropment 68

) 20. The Hybrid Network Test Problem. 70
vii -

Table

$ 0 N » kW

e o
Lol A o)

List of Tables

Fourier Filter Nodes vs Training Time
Nearest Neighbors Percent Accurate Clas:ification
Back propagation vs Hybrid Net
Percent Accuracy va Net Size
Counter Propagation:Kohonen Node vs accuracy
Hybrid Net: Kohonen Nodes vs Accuracy
MFB: Percent Accuracy vs Net Size
MFB: Extended Training of Converging Topologies
Pruning to Find the Optimum Size Network
Counter Propagation: Kokonen Node vs Samples
Hybrid Propagation: Kohonen Nodes vs Samples
Back Propagation: Accuracy vs Net Size
Hybrid Propagation: Accuracy vs Net Size.

-t A o A, - e i

A

v -y . .

—

AFIT/GE/ENG/88D-54

Abstract

’

An environment is developed for the study of dynamic changes in patterns of
weight and node values for artificial neural networks. Graphic representations of
neural network internal states are displayed using a high resolution video terminal.
Patterns of node firings and changes in weight vectors are displayed to provide in-
sight during training. Four pattern recognition problems are applied to four types
of artificial neural networks. U:ing simulated data, a simple disjoint region clas:i-
fication problem is developed and exainined using a Kohonen net and a multilayer

feedforward back propagation (MFB) network.

A MF'B neural network is also used to simulate a Fourier filter. Using a Koho-
nen net, a MFB, a counterpropagation and a hybrid network, data measured from
infrared and laser radar imagery of military vehicles is analyzed. The accuracy and
training times for a MFB net and a Hybrid net are compared using an ambiguous
decision regiou problem. Each classification problem is examined and cumpared to
classical, nearest neighbor pattern recognition techniques. Using dynamic analysis,
neural network rruuing is used to detecmine optimum node configurations. A hybrid
neural netwcrk is developed using Kokoncr training rules for the first hidden layer
followed by one or two hidden layers using standard back propagation n:ies for train-
ing. Advantage of the hybrid network is shown for classification problems involving
anomalies characteristic of measured data. The Hybrid network requires less train-

ing and fewer interconnections than MFB when classifications involves ambiguous

decision regions. -

)

oy
4

-

[]

%"ﬂ“’ o

.

. \

DYNAMIC ANALYSIS OF
FEEDFORWARD NEURAL NETWORKS
USING SIMULATED AND MEASURED DATA

I, Intrcduction

Autonomous military target detection and classification from electronic im-
agery is a topic of great importance to the Department of Defense. The solution to
the problem may lie in one of several implementations of artificial neural networks.
Several topologies for neural networks have been proposed, each of which provide
a solution for a narrow class of pattern recognition problems. Some researchers
(Huang,1987) feel that combinations of more than one type of neural network may

result in a more dynamic and robust system.

Identification and classification of targets from electronic imagery is a difficult
problem due to the vast amounts of data involved. A single image can contain mil-
lions of bits of information, all of which need to be prccessed. Processing images
for pattern recognition is a threefold problem. First, the targets must be separated
from the background or segmented. Second, the data must be reduced to a man-
ageable size, commonly called vector quantization. This reduction in data can be
accomplished by selecting specific features of a pattern and using only these features
for classification. Good pattern recrgnition requires good i\ 1tures. The final task is

classification of the vectors.

Determining which ieatures of an image form the best description of an object

is, in itself, a difficuit problem. This study will examine several sets of data collected

from a variety of sensors, including laser radar and passive infrared imagery. Baseline

classification analysis will be made usin.;, six;xple feedforward neural networke then

extended to new forms ot combinations of the feed{>rward nctworks.

One of the difficulties encountered when testing neural networks is the lack of
good test data. Tra.ining a pattern recognition system requires thousands of teach-
ing cycies. Although, one would p:fer very large training sets using real imagery,
in practice intcrtunately, trairing sets rarely ex-eed more than a fev: huadred im-
ages due to the difficulty in segmentation and vector quantization. When exploring
or testing a particular neural net algorithm, the data problem can be avoided by
computer geaeration oi the input vectors, based on the problem description.

Success of a particular classification problem depends on a number of factors.
First, consider the validity of the segmentation of the data. Has the actual target
been separated from the background data and noise ? Next, is the feature extraction
legitimate. Do the features selected for the input vector represent s good description
of the target 7 Once the target has been extracted from the background, is the vector
quantized description unique enough to allow classification ? Finally, is the neural
network topology sufficient for the size of the decision region and can it accurately

classify input patterns ? Special tools may be needed to answer these questions.

An environment to examine int..rnal operation of the neural networks as they
train could help determine th- efficiency, and accuracy of different topologies. Eval-
uation of the internal constants and variables as the network trains may offer insight
iato which values may be best suited for a particular set of circumstauces. Although
the primary area of investigation considered here is network topologies, the soft-
ware package generated as a result of this effort will be a generalized research tool
to study segmentation or vector quantization algorithms as they apply to neural

network classifi. - .ion problems.

-

1.1 Background

The ability of machines to interpret visual images remains an unsolved prob-
lem. Military planners have long been interested in developing means to automati-
cally detect and classify military targets using conventional sensors. Although these
sensors, television, infrared scanners or multifunction laser radars, provide enough
informalion for a human operator to find a target, the exter:s'on to automatic detec-
tion and classification is still impractical using current computer architectures. The
computational effort to classify or detect tactical targets from mission sensor data is
too demanding to be performed in real-time.

These problems may be resolved by a computer technology called artificial
neural networks. Artificial neural networks are computer structures or architectures
that attempt to mimic some of the known characteristics of biological brains. Neural
networks may provide relatively fast, approximate solutions to problems, as opposed
to the slow, exhaustive (but exact) solutions provided by conventional computer
architectures. Artificial neural networks may be arranged in a variety of intercon-
nections of data input and outputs along with intermediate levels. These different
arrangements characterize the topology of the network. Of the myriad of topologies
of neural networks studied, the most directly applicable to the target identification
problem, are the multilayer feedforward networks (MFB) using backward error prop-
agation (sometimes called multilayer perceptrons) and the Kohonen maps. These
two classes of neural networks have an advantage over many other networks, as both
accept coatinuous data as input (Lippman,1987). Many other network configura-
tions accept only binary data. Although binary data processing is sufficient for some
classes of problems such as text recugnition, to pick an object out of an image, the

system must be able to process continuous valued inputs. The analog data pro-
cessed by the network may be in the form of correlation peaks, statistical moments,

or some other vector quantization of distinguishing characteristics calculated from

the original image.

PRI VRSP 20 i R

e et e e e ———— e e e e e a ar e e - -

While both the multilayer perceptron and the Kohonen maps are suited to
the pattern recognition problem there are drawbacks. The MFB model requires
hundreds of thousands of training <ycles. Complete training may require several
days on a high speed computer. Also, while the number of nodes at the input and
output is defined by the problem, optimization of the inner node parameters has not
been fully addressed. The number of input nodes is fixed by the size of the input
vector and the number at the output relates to the number of classes. Currently, the
correct number of hidden nodes iz determined by experimentation. Some feel that
tue number of hidden nodes in the first layer should be three times the number in
the input layer. Others feel the configuration of the inner layers should be related
to the input data (Baum,1986).

Analysis of data using a Kohonen map only partially solves the problem. The
output of a Kohonen map is a two dimensional mapping of a multi-dimensional
decision space. By mapping one class into one area of the map and another class
into another region of the map, the coraplexity of the decision regions are reduced.
Unfortunately, for a complete solution the map must be interpreted. Currently, that
is done by examination. The output of a Kohonen map is simply another type
of pattern recognition problem. Huang believes that a Kohonen map may be able
to function as a preprocessor for some other class of neural network (Huang,1987).
The combination of the Kohonen map and the multilayer perceptron may offer a
solution to the weaknesses of both. Using a Kohonen map to organize the data
into a two dimensional grid, then feeding the output of the grid nodes to the input
layer of a multilayer perceptron provides a mean of interpreting the Kohonen map.
The Kohonen map may also reduce the complexity of the decision space for the

perceptron. Training time should be reduced since the time to train the weight
values for a perceptron is related to the complexity of the decision regions.

1.2 Problem

The largest part of the effort will be devoted to developing a method to display
the internal values of the network using a graphic representation that allows insight
into it’s operation.

By analysis of the dynamic nature of the network, it is hypothesized that
methods for optimizing the topology of the network may be devised, and a bet-
ter understanding of the artificial neural network paradigms would be gained. The
problem of general interest is: can two types of neural ne*work topologies be com-
bined to get a synergistic effect greater than the sum of the two separately? The
MFB provides a solution to the disjoint decision region problem while the Kohonen
map provides a method to organize unclassified data. This thesis effort will examine
several methods of combining networks to get improved performance and reduced

training time.

1.3 Approach

The final product of the study is a graphics intensive environment for dynamic
analysis of artificial neural networks. This software package will allow tiie user to
explore other neural network problems using common problem definition for.nat. By
creating a file listing of a number of exemplars patterns (vector quantizations), along
with a specified classification, any general classification problem can be feed into the
package for analysis.

The package will consist of four types of neural networks sccessed from a
common menu. The aetworks are a Kohonen map, a multilayer perceptron, a counter
propagation net and a hybrid net. In addition, an error surface demonstration will
be included in the menu for tutorial purposes.

Validation and testing of the package is accomplished by using the software to

study four neural net problems. Tke first problem considered is a decision regiou

-

NI ST BRI & B B

v

!

problem, using both simple and disjoirt decision regions. The second problem will
consider neural networks as a Fourier filter. The last two problems will use measured

image data from the Ruck (Ruck,1987) and Roggemann (Roggemann,1983) data sets.

Using the environment tools, efforts will be made to optimize the number of
nodes to the type of data being tested. Each network will be tested for the number
of training cycles to convergence, and accuracy. Test sets will be analyzed using each

of the conventional nets, as well as classical nearest neighbor c'assifiers.

The development of a hybrid neural network will be the final step in a process
to examine several types of neural networks. The process will include finding ways

to display information about the dynamic processes inside the networks.

Chapter II provides background information concerning artificial neural net-
work. Neural networks are discussed in context of the type of problems each topology
is intended to solve.

Chapter I1I discusses the software engineering aspect of the neural network
environment. The organization of the software is explained in terms of the various
functions and operation of the major modules.

Chapter IV provides the analysis and testing of the software environment.
Several common classification problems are analyzed using the system as well as two
specific data sets. Each problem or data set is analyzed using one of several common
neural network topologies.

Chapter V is an overview of the results of the experiments including general
cbservations applicable to many t:"pes of neural network problems.

LI

I i1 L

. .

LTS Y& 2k ot Lot e it - e et e ot e e o

II. Literature Review

Real-time target recognition for intelligent weapons systems is too compu-
tationally intensive to be practical using current computer technology. Picking a
legitimate military target from video sensor information requires so many calcula-
tions that identification and classification may requires hours while only seconds
are available. The brain, a biological computing engine, can solve these type prob-
lems quickly. A novel computer architecture based on the way the brain is thought
to function, may provide a solution to classification problems. This architecture,
called artificial neural networks, may provide an alternate approach to conventional
computers and artificial intelligence paradigms for target recognition tasks.

This section will discuss the origins of the artificial neural networks, and the re-
lation between the biological :nspiration and the computer implementations. Start-
ing with the basic building blocks of neural computers, the node, the difference
between natural and artificial intelligence will be discussed in terms of abstract rea-
soning verses brute force calculations. Several topologies of node interconnections
will be discussed to demonstrate the diversity of programming or training tech-
niques. Finally, this chapter will discuss the characteristic of problems, in terms of
disjoint and ambiguous decision regions, which affect selection of network topology
and training rules.

2.1 Historical Perspective

Greek philosophers, including Plato and Aristotle, offered theoretical expla-
nations of the brain and thinking process a few thousand years ago. Heron the
Alexandrian built a hydraulic automata around 100 B.C. Abstract, conceptual in-
formation processing operations have been performed by mechanical devices for a

few centurics, for example the slide rule.

R - -

) W

R

el el Cml

et - .

Jand

=1

~~

T e y——-

W - — —

™

The first theorists to conceive of a computer based ;;sychological models and
neurophysiological research were W.S. McCulloch and W.A. Pitts in the early 1940’s
(Kohonen,1987). Although early research efforts parallel.d the development of the
modern computer (the Von Neumann Machine), the concept of a cybernetic machine
has been popular since ancient times. These types of computers were first called

connectionist machines and later artificial neural networks.

Artificial neural networks have been studied for ~everal decades. At first they
were studied in connection with psychological theories and neurophysiological re-
search. By 1960, many implementations of “neural computers” had been developed.
Today, neural computers may offer a solution to the growing need for a machine
that will perform not only calculations, but actually make judgments. A funda-
mental limitation of conventional computer architectures is the inability for abstract
reasoning. Based on the biological model, neural network computers attempts to

overcome that weakness.

2.2 Natural vs Artificial Intelligence

Although it may be impossible to determine exactly how the brain works,
observation of its behavior may be enough to determine why humans are good at
solving types of problems that cause computers great difficulty. Identifying a face in
a crowd, or navigating through a room without bumping into the furniture, requires
an effort beyond the capability of modern computers. Yet, even children learn to
identify their parents after only a few months and the smallest insect is capable of
solving navigatinn problems beyond the capabilities of advanced robotic systems.

Bruce D. Shriver noted:

...digital computers are extremely good at executing sequences of in-
structions that have been precisely formulated for them with stored pro-
grams representing the processing steps that need to be done. The human
brain, on the other hand, performs well at such tasks as vision, speech,
information retrieval, and complex spatial and temporal pattein recog-

w T

nition in the presence of noisy and distorted data-tasks that are very
difficult for sequential digiial computers to do at all (Caudill, 1987:48).

Artificial intelligence is a sequential process which involves collecting all avail-
able data and systematically processing each piece until the solution is established
by completing an algorithm. Natural intelligence differs from artificial intelligence
by using a system to extract relevant information from the available data, then ex-
trapolate an approximate solution. In terms of the target classification problem,
the process would organize the data (self-organization), extract relevant information
(feature extraction), and compute a solutivn (classificatios).

The basic building blocks used by the brain to perform these calculations are
called neurons.

2.8 The Neuron

. Neurors are the brain’s electrochemical processing elements which allow indi-
viduals to “store, represent, retrieve, and manipulate data such as images, smells,
sensations and thoughts™ (Caudill, 1987:48). Neurons are slow by digital electronic
standards. Response times are measured in hundreds of milliseconds as opposed to
the nanosecond response time of today’s integrated circuits. Still, the massive num-
ber of neurons may make up for the lack of speed. The brain is estimated to use
between 10'° and 10" neurons (Kohonen,1987:227) in an intricate, interconnected
structure. Many neurons are connected to thousands of other neurons. Each neuron
reaching out to other neurons by means of a single output, the axon, a fiber-like struc-
ture that attaches to other neurons by a synaptic terminal (Kohonen,1987,:210-240).
This connection between the neurons performs a small, imprecise multiplication of
the signal transmitted down the axon to the synaptic terminal. These signals are
accumulated by the receiving ncuron. When the sum of these signals reach a suffi-
cient level, the neuron fires a weak electrical signal down its own axon to the next

neuron in the chain.

Th. process causing the neuron to fire is the most powerful aspect of reural
~omputing. Each of the axons provide an adaptable weight which can inhibit /excite
the signal between neurons. The axons ars similar to the memory unit in a digital
computer with one exception; they are able to adapt and ch' age with time. The
mechanism which modifies these weights enables learning. By duplicating this pro-
cess artificially, we may be able to build computers that learn by example, rather than
loading a stored program. The Japanese, in their announcement of the fifth genera-
tion computers, “coined the term natural vs artificial intelligence” (Caudill,1987:46).

What kind of process or how the process allows people to think, walk, or
recognize objects, is not understood. That this process contains the solution to
the pa.tern recognition problem is demonstrated by our own ability. Whether a
computer can reproduce this ability is the subject of many research efforts. Using
a neural computer architecture, the computer may be able to discover, on its own,
the underlying structures in a given set of input data which makes recognition of
specific patterns possible (Kohonen, 1981:214-215).

The biological neuron is the basic computation unit of the brain and provides

the inspiration for the neural network node. The node is the basic computational
element of artificial neural networks.

2.4 The Neural Network Node

Advances in many fields have made possible faster and more powerful com-
puters than ever before. Unfortunately, even the most sophisticated computers are
tied to a structure which allows them to perform only a single digital operation at
a time. These register functions, multiplication of two numbers, storing results or
gett: ' more data, must be performed sequentially, one register at a time. Although
the speed of these simple computations is hmited orly by the speed of the material
and design technology, there is only a single path for the data flow.

This limitation is known as the “Von Neumann Bottleneck” (Hamacher,1986).

10

Input Values °
Vector Quantization

Figure 1. A Neural Network Node

Because each calculation must pass through a single point, the central processor,
data flow is restricted, like a bottleneck. This obstacle may soon be overcome by
an architecture which uses a massively parallel approach to problem solving. These
structures, called Neural Networks or Connectionist Machines, are based at least
partially, on the way the human brain is thought to function. The simplest processing
element of a nevral network is the nnde. Schematically, a node is composed of a

muititude of inputs and one output.

In early neural networks, the output node value was either zero or one, based
on thresholding the dot product of the input vector and the weight vector. A neural
computer is composed of from several to a few thousand nodes.

Dr. Robert Hecht-Nielsen describes the first commercial neurocomputer as

“a computing system made up of a number of simple, highly intercon-
nected processing elements, which processes information by its dynanmic
state response to external inputs” (Caudill,1987).

11

R PP Y

By connecting the output of some nodes to the input. of other nodes, large

arrays or networks are formed which seem to be capable of computing abstract
decisions. Each processing element computes, in parallel with all other nodes, a
simple true/false decision based on the weighted sum of the inputs. These basic

decisiuns form a basis for broader abstract reasuaing.

Analysis of the differing methods to arrange the interconnection between nodes
together with the rules to establish the interconnection weights makeup a large part
of the study of artificial neural networks.

2.5 Artificial Neural Networks

Study of neural network models is usually conducted on standard digital com-
puters. Sev.ral of Kohonen’s models were first written in Turbo Pascal for the IBM
personal computer (Kohonen, 1987:14). These models take the form of a computer
program. The various parts of the neuron are modeled as daca structures in cigital
memory. Although many of the advantages of using neural nets are lost by using a
“Von Neumann” machine, the research process may develop algorithms latc~ suitable
for dedicated hardware.

Developing a neural net is a three step process. First, the data structures
are organized in memory, either as arrays or link lists. There are two types of
data siructures, the nodes and weights. The nodes are simple accumulators which
occupy the number of memory locations or bytes required for one flcating point
number. Ncdes can be considered the “neurons” of a neural network. The other
data structure, the weights, are analogous to the axons. They occupy an array of
floating point memory locations, usually a two dimensional matrix of floating poiat
numbers. The second step is to determine the adaptive weight values using a training
algorithm. These can be either supervised, that is, a priori knowledge of the input
pattern, or unsupervised, using unclassified random inputs. Finally, using a black
box approach, data is presented to the inputs, propagated through the system, then

12

read at the outputs (Kononen,i987:13-17).

Like the neuron in biological systems, the ncde is the principle unit of artificial
systems. A node value is formed by mathematically manipulati the input value and
the connection weights. Exactly how, is dependent on a particular neural network
topology. Every element of the input vector is connected to every node. Many
arrangements or taxonomies of nodes and weights have been developed by Hopfield
and others. See Lippman’s overview (Lippman, 1987:7-13).

Each type of neural network is applicable to a specific class of recognition prob-
lems. Only two of these networks relate to the problem under investigation, Kohonen
maps and the multilayer feedforward backward error propagation nets (MFB), some-
times called the Muitilayer Perceptron net. These two neural network topologies are
suitable to the combination network problem because they allow continuous data
to be used as inputs. Most other types of networks accept only binary data (Lipp-
mann, 1987:7-13). The Kohonen map was selected for its ability to organize data
into rational decision regions, while the MFB was selected for its ability to classify
data contained in complex decision regions. Classification efforts could be reduced
if relevant features which differentiate the exemplars, could be extracted from the
entire data set first.

This is the principle of self-organization. Self-organization is a form of unsu-
pervised learning. In unsupervised learning, the classification of a particular training
exemplar is not used in training process. Comparison of the ectual output with a de-
sired output, sssential to backward error propagation, is not made. Self-organization

on compares each exemplar with all the other exemplars. Unsupervised learning pro-

vides an organization of the data which reduces the complexity of the classification
problem.

2.6 Unsupervised Learningy

Kohonen felt that the pattern recognition problem could be simplified if the
algorithm could somehow automatically extract relevant features from the input data
(Kohonen, 1981). Kchonen’s work differed from earlier work, because he was looking
for an organization of neuron-like units which could automatically detect common
characteristics of the input data without regard to a snecific classification. As he was
trying to do speech recognition, his data set consisted of many unlabeled éxampla.
Kohonen was using input vectors made by spectral decomposition of speech to train
his mapping networks. These examples were presented to the recognizer in hopes
that the mapping algorithm could sort out the various vowel and consonant sounds.
The Kohonen map tries to construct a map or “hierarchical clustering” of patterns
with the same characteristics. He called this feature extraction the “first step to all
percepticn” (Kohonen 1981:2). To do this, he developed an unsupervised learning
scheme which pushes one class of data to one part of the map while another class
would appear on another part of the map. These “feature maps” are a spatial

clustering of input samples with similar characteristics.

2.7 Kohonen Feature Maps

A Kohonen map has a unique structure. A layer of at least two input nodes is
required. Weights connect the inputs to a layer of output nodes. Every input node
is connected to every output node. This output layer is constructed in the form of a

grid. Fifteen by fifteen nodes is a common arrangement {Barmore,1988).

The map is trained by using distance measurements between the input data
and the weights. The difference is fed back to the system to reduce the distance for
inputs with similar chzracteristics. When data is presented to the input nodes, the
Euclidian distance between ar input and a output is calculated. This distance is
calculated by corsidering each output node in turn. First, calculate the sum of the
square of the differences between each input node and the weight. After considering

14

each output node, one distance will be lower than a:ny of the nthers. This node is
considered the “winner.” The weights connected to this node are adjusted slightly
so the distance is a little smaller. Also, each node in a small neighborhood around
the “winner” is adjusted so that any similar data will appear in this region. As the
training continues, the neighborhood around the winner is reduced until only the
single node is updated. By the end of the training process, under non-pathological
conditions, similar exemplars will cause a node to fire in small region of the map.
Classification is a matte: of detecrmining which region of the map is activated when

data is presented to the inputs.

Notice that the map is never told what pattern it was training on. The net
simpiy organized dissimilar data into different regions of the map. Kohonen classifi-
cation is based on visual inspection of the feature map. To automate the classification

process, a new type of learning process is required.

2.8 Supervised Learning

Another class of training algorithms uses a supervised training technique. With
this method, a pattern is presented to the input of a neural net, then the difference
between the actual output and the expected output is calculated. This measure of
error can be used to adjust the weights. This is callea “error correction” or “back
propagation”. Back propagation i1s the principle behind the single and multilayer
feedforward (MFB) model neural network.

2.9 The Single Layer Perceptron

While the Kohonen model uses unsupervised learning to organize data, the
specific classification of an exemplar input is important to the training of the MFB
model. The back propagation scheme trains the neural network by example. This
algorithm begins with the connection weights set at small raudom vaiues. Data are

presented to the input and the error at the output is measured. The gradient of the

15

error is calculatéd, and the weights are adjusted a small amount to reduce the total
error. New data are presented over and over again, correcting the connection weights
a little each time. Eventually the weights, under sufficient conditions, will converge
to a solution. When data are presented to the input, a classification value will appear
at the output. By arranging cne set of input nodes to feed many output nodes, many
classes of patterns can be identified by detecting either a zero or a one at the output.
Unfortunately, the work of Sun (Sun, 1986) and others (Lippman, 1987) have shown
that the Single Layer Perceptron can only make correct classifications in very simple
decision regions. A number of complications can affect the performance of a single
layer perceptron. Different classes of data being meshed in a small decision region
are one example. The next section discusses a class of problems which cannot be
solved by a single layer perceptron: the disjoint region problem, sometimes called a

disjunctive learning region.

2.10 The Disjunctive Learning Region Problem

A common example of a disjoint region problem is shown in figure 2.10. This

example is sometimes called the ezclusive ~ or problem.

Assume a specific pattern to be in a bounded region in the x-y plane. The
input vector can be generated by selecting one of the regions, and adding random
noise. The output vector, or desired classification of the input vector is determined
by noting the location of the x-y pair in the plane. The example can be extended to
include any number of disjoint regions in either two-space as described above, or up

to n-space with n elements of the input vector.

Additionally the output vector can describe any number of classes. The sim-
plest example could be to relate one region to one class. The disjoint region problem
concerns the case where two regions in the decision space make up a single class.
Large, even infinite data sets can be used when the particular problem being inves-

tigated allows computer generated input vectors such as decision regions in space.

16

Double disjoint decision region

(.

&

©

Exclusive-Or problem

Note: No single plane can Zivide the region by class

Figure 2. The Dis;oint Region Problem

17

HIEIEREs oo aeoein ot aa Laes B i R T

P

The disjunctive learning region problem stems from a pattern recognition sit-
uation in which the decision space may be split into several regions. Even though
two or more regions in the decision space may be widely separated, the regions may
represent the same class of patterns. When training a net under these conditions,
the convergence time is greatly increased and may not be possible at all. Valiant
notes:

“Simple rules of thumb may be hard to learn. There is evidence that cer-

tain significant . . . classes [may be] rendered computationally intractable”
(Valiant,1983)

He was referring to the fact that generally "rule of thumb” type decisions fall into
this class and contain disjunctive learning regions. Althouga, in some cases the
network can learn the disjunction in the decision space, the training time may be

unacceptable.

The performance of the perceptron can be improved by adding additional lay-
ers. Single layer perceptrons cannot solve disjunctive learning region problems. By
adding an additional hidden layer the perceptron model can be use to solve disjunc-
tive learning regions. The next section explains the multilayer perceptron.

2.11 Multilayer Perceptron

Adding layers to the perceptron model can allow for an increase in the complex-
ity of the decision regions. The input to a perceptron can be considered as a point
in a decision space with one input node for each dimension of the decision space.
The weight vector defines a plane (or hyper-plane for n-dimensional space) dividing
the decision space into two regions (Lippmann,1987:16). Inputs whose hyperspace
representation appear on one side of the plane are considered to be a member of the
class or in-class and inputs on the other side of the plane are considered out-of-class.
Additional layers in the perceptron model allow for more complex decision regions by
partitioning off the space into intersections of several in-class regions. The network

18

ey

T

W

”

topology is changed by adding one or two hidden layers of nodes between the input
and output layer. Minsky and Pappert showed that a single layer perceptron could
not be used to solve the exclusive-or problem (Minsky,1961). Huang and Lippmann
showed that two and three layer nets can form arbitrary decision regions as well as
solve disjoint decision region problems (Haung,1987:1-2).

A problem may arise when the input data is not sufficiently separable. Rosen-
blatt demonstrated (Lippmann, 1987:14) that if the data was separable, and a bound-
ary could be placed between the two decision regions, the training algorithm would
converge to the correct solution. However, if the data is not sufficiently separable,
then the convergence procedure might oscillate, moving the decision boundary be-
tween overlaying data points. A modification to the training algorithm, using a least-
means squares solution was suggested by Widrow and Hoff (Lippmann, 1987:14).
Unfortunately, the algorithm is not as efficient for distinctly separable data. This
type of problem is caused by ambiguous decision regions. When two classes of data
are very close to each other in decision space, perceptron models do not converge
well as will be shown in Chapter four.

Another solution, recommended by Huang, suggests using a hybrid combina-
tion of a Kohonen layer on the input whose output nodes would feed the inputs of
a MFB network (Haung, 1987:1-10). In his approach, the Kohonen map could be
used to organize data which would feed a MFB model input layer. This approach
could prevent having to train the MFB to classify data in complex decision spaces
and significantly reduce training convergence time.

To explore the possibility of combining different types of neural networks, the
sonar classification work of Sejnowski should be considered (Sejnowski,1987:75-89).
His work is important because it is one of the first efforts, along with Huang, to un-
derstand exactly what is happening in the hidden weights and nodes of the muitilayer
MFB. In his experiment, Sejnowski trained a neural network to differentiate between
the sonar return of an underwater metal cylinder and a rock with a similar shape.

19

N Rl

gt

L iaiied il et ar i

PO Lo e N S« o P S PU e e e eeem e o

The network uses two layers. The classification was based on the low order Fourier
components of the return signal. His goal was to determine the internal strategy
used by the network to make a classification. A complete description of the result is
beyound the scope of this discussion, refer to the Sejnowski paper (Sejnowski,1987)
for a complete analysis. He did note that the overall strategy of the net was to
default to a cylinder response and to detect the presence of rock characteristics. The
scheme caused deactivation of all nodes, while the activation of only a single node
caused the firing of the rock node. His work is significant, not only for the results of
the experiment, but the tools and procedures he developed to characterize the inner
workings of the hidden layers.

Huang, with a simple constructive proof, showed for several cases that disjoint
decision regions could be formed, not only with a two hidden layer arrangement, but
also with a single hidden layer. He went on to show that although these types of
complex decision regions could be constructed on paper, in practice back propagation
training would not converge in any reasonable amount of time without the second

hidden layer.

With this analysis, Huang proposed three alternate classifiers, a fixed weight
classifier, a hypercube classifier and a feature map classifier. Fixed weight classifiers
attempt to reduce training time by only adapting weights between the upper layers of
the network. By fixing the weights at some arbitrary values, hyperplanes formed at
the input may be sufficient for the upper layer to classify without additional training
of the lower levels. The weights were fixed and tested in two manners, first randomly
set weights between negative 0.5 and positive 0.5, and second, using statistics of the
iaput data to form grid lines. This solution proved inadequate, as the possibility of
convergence depended on the starting values for the randomly selected weights.

The second proposed solution was to fix both of the lower level weights at
specific hypercubes calculated from the statistics of the input data set. The upper

layer of weights are trained using back propagation or some similar degeneration of

20

RN 4 T I

L

-——

11

? .

back propagation base’ un the relaxed requirements. The results were good, but
the computational effor. of estimating the initial hypercubes was significant. Better
resuits were achieved using the feature map approach.

The feature map ciassifier is a simplification of the combination neural network.
The first layer of the network forms a feature map using a self-organizing clustering
algorithm as described by Kohonen (Kohonen,1987). Weights to the Kohonen map
are trained unsupervised allowing first layer feature nodes to sample the input space
with a node density proportional to the combined probability density of all classes.
The first layer feature map nodes perform a function similar to that of second layer
hypercube nodes from the previous exampie, except the results are more general.
Each node will go high for a general region of the feature map. The upper layer will
do the necessary “and-ing” and “or-ing” of the decision space for proper classification.

Huang used quantized speech vectors for his data set. For image target classi-
fication, the decision regions may be complex enough to require the additional layers
of a MFB. Huang uses only a single layer above the feature map.

The next section discusses an alternate approach to classification called the
counterpropagation network. Counterpropagation is used as the starting point and
benchmark for development of the hybrid network.

2.12 Counterpropagation

The counterpropagation network is an architecture which combines the self-

organization feature of Kohonen with the outstar structure suggested by Grossberg.

The combination network is a multilayer feedforward network with a Kohonen
organizer on the first layer and a Grossberg outstar on the second. It has two
additional layers used to train the network which will not be ‘discussed, except to
note that a counterpropagation net wil! allow regeneration of a input vector by

specifying an output, hence the name counterpropagation.

21

Bl

W

' el el o al s Rl

!

last

B

Donald Woods (Woods,1987:473), noting two 2berrations to the learning, sug-
gested that a conscience be to added to counterpropagation. The first problem with
the Hecht-Nielsen algorithm is that the input vector must be nonnalized. limiting
all exemplars to the unit hypersphere. Consequentiy, no differentiation can be made

between vectors which are related by a scaling factor. The problem can be overcome
somewhat by a training rule which tries to minimize the distance measurement in-
stead of maximizing correlations. In this way both (1,1), and (2,2) will be mapbed

uniquely in the decision space.

The result obtaned by using Kobonen type mapping as an input another type
of network is the generation of an intermediate, unclassified representation of the
input. The complexity of the data to the output layer is greatly reduced and the
construction of the output net is better understood. For backpropagation using the
three to one first hidden layer nodes to input nodes, will probably converge, and

network pruning can reduce complexity even more.

The difficulty of this approach is that the intermediate representation of the
data may not be a good vector quantization of the input. Convergence is guaranteed
under the simple criterion that the number of elements in the Kohonen layer is greater
than the number of distinct decision regions in the input data, again something
unknown a priori. The aumber is bounded by the number of exemplar vectors used
for training. As the number of Kohonen units approaches that number, the solution

will degenerate to a simple table look-up without generalization.

On the other hand, as the number of nodes is reduced, each node represents the
average of a pumber of exemplars. Classification is simply a matter of mapping the
Kohonen map to an output map. For something as simple as the counterpropagation
rule, the Grossberg outstar format is sufficient. The output is‘simply a binary word

one bit per class.

2.13 Summary
Computation based on neurophysiological models has been considered for a

few thousand years, though actual neural computers have only existed for only a few
decades. While the von Neumann computer remains the most widely used cornputer
architecture today, neural computers may someday perform tasks which today’s

computer cannot.

Neural computers do not find solutions to problems based on systematic, exact
calculations, but make judgments or estimates using a massively parailel approach.
The approach uses from several to thousands of individual processing elements.

The processing elements, or nodes, are based partially on how the brain is
thought to function. While the nodes may in some ways resemble the architecture
of a neuron, how this architecture with interconnections between hundreds of nodes
is able to solve real problems, remains a mystery.

Many different interconnection schemes have been suggested to transform a
number of nodes into a computing machiue capable of making judgments. Each of
these schemes or topologies reveal their own strengths or weaknesses depending on
the type of problem being considered.

The statistical makeup of input data seems to determines which type of neural
network is best suited to solve a particular problem. For simple decision region
problems with no disconnected or disjoint learning rrgions, neural network training
is easy and only a few nodes are required. As the number of disjoint or ambiguous
regions increase, the size of the network required for convergence seems to increase
dramatically.

Classification prdblems would be simpler if the input data could be mapped
into a decision space which lacks these disjoint regions. Data self-organization as

suggested by Kohonen, may provide such a mapping. Combi;n'ng Kohonen self-

23

organization with back propagation of error may reduce the &mpleﬁty of the deci-

sion regions and consequently reduce training times.

In order to construct a combination MFB and self-organizing neural net, an
environment to analyze the dynamic nature of geural pets is developed for use on a
color graphics workstation. The environment will allow the study of several types of
neural nets with application to both measured data (the Ruck and Roggerman sets)
and calculated data. The next section will discuss the organization of the software

environment, use to develop the Hybrid network.

24

g

&:—wv~,

III. The Neural Network Analysis Environment

In order to study the dynamic nature oi neural networks, an environment was
devised to present the vast amount of data in such a way that would allow insight into
the internal workings of the net. A system was designed for the Silicon Graphics
IRIS workstation and written in the “C” programming language. The IRIS was
selected over similar work stations because of the larger color tabie available than

on the Sun or GPX workstations.

The design method was iterative. A number of working prototypes were de-
veloped, adjusting displays and menus as needed. As more was learned about each
topology and algorithm, new reruirements were added. Consequently, the require-
ments analysis phase lasted through moset of the project. One of the goals of the
project was to study different network topologies. Only as the models were imple-
mented and tested did it become apparent what type of information needed to be
displayed. After a number of prototypes were developed, patterns began to emerge
as to which software modules were problem specific and which could be reused to
create more varied and powerful modules.

Special features and displays were added to the environment as research into
the problems continued. The simple models showed what might be useful. The
final product took the basic designs and fit the pieces into general purpose reusable
components for construction of new topologies.

The NeuralGraphics software package developed as part of the research, con-
sists of independent programs run from a common menu. The programs are selected
from a shell or script program which calls the individual programs. Each program

is independent and is run as an execution file from the script program.

-“‘;vv.,r

Although each program is independent, they all share a common software de-
sign. This section will discuss the modules which make up each of the four types of
neural networks which make up the NeuralGraphics package.

3.1 Software Design

Each of the neural networks is composed of a number of independent software
modules. Changing the topology required only small local changes within a particular
module to change the old network to include new training rules or display features.
In addition to the basic modules, a graphics tool box is provided, which is specific
to the Silicon Graphics IRIS video display.

At the highest level of abstraction, 2 neural network will consist of: a routine
to éompou input vectors, a propagation algorithm to feed the vector through the
network, a training routine for modification of weights, a graphic display package
and an analysis routine for periodic testing. Important lower level modules include
the initialization procedure and an event driven menu to control the training and

operation of the network.

3.2 Initialization Module

The initialization routine has three functions. The most important is the es-
tablishment of the network in memory. In addition, the weights and thresholds must
be filled either by a random number generator, or a stored file from a previously
trained net. The second feature is to check which software switches are being in-
voked. These include display options, and training parameters. The third function is
the equipment check to determine the nature of the graphic displays and to initialize

the video drivers as necessary. The size of the screen will determine exactly how

much data can actually be displayed.

3.2.1 [Initialization and Declaration of the Net A "C” data structure is used
to define the network. Each type of net uses a similar structure. An array of numbers
for the output and input form the basic net. Between layers lie similar arrays for
the various hidden nodes, if any. In addition to the nodes, there are the weights
connecting the nodes. These are represented as two dimensional matrices. Another
element that makes up a neural net is called a threshold value. Although similar
to a weight, these values are stored as a single dimension array associated with a

particular node array.

These data structures, along with a definition for input, output and hidden
layer array lengths are stored in a single program module (a header file for C pro-
grammers). The data structure is declared and is one of the few global variables for
the whole program. The net weights are initialized in one of two manners: either
by randomly selected weights, or retrieved from a file. After the data structures are
initialize the video hardware must be initialized.

8.2.2 [nitialization of the Video Display The current version of the package
initializes the hardware for a Silicon Graphic IRIS workstation. This is A Motorola
68020 based computer with an extended graphics capability. Wherever possible,
hardware specific commands are isolated to the graphics module. Porting the code
to other types of hardware requires ouly a substitution of the gl.h and device.h
header files. These device specific files are provided by the IRIS compiler pazkage. A
substitute file would include macro redefinitions for the hardware specific commands.
Once initialized, a framework is established for solving a classification problem. The
main program loop continues the process by propagating the input'to the output,
adjusting the weights, and checking the progress. The next section discusses the

structure of that process.

3.8 The Main Program Loop

The main program loop consists of the MAKEINPUT module, the PROPA-
GATE module, the TRAINNET module, the TESTNET and the DISPLAY ana
SHOW modules. A counter is used to inhibit the calling of some modules through
the loop to reduce computations effort. For example the screen may be updated only
on every tenth cycle. However, each pass through the loop represents one training
cycle, so MAKEINPUT, PROPAGATE, and TRAINNET will always be called.

3.3.1 Makeinput Essential to the training of a neural net is a set of input
patterns and a defined classification, in other words, an input vector and a desired
outimt (doft). The function will fill the net data structure with a randomly selected
exemplar from the exemplar or test set. The module allows for calculating the
vectors or taking them from a stored dats set read in during initialization. Also,
the initialization data preprocessor may add gaussian noise to vectors. The work of
Sietsma and Dow indicates that adding noise distributed across the actual statistics
of the data seems to improve the performance of the netwrk.(Sietsma,1988:325).

3.9.2 File Input of Ezemplar Sets Most problems can be described in terms of
a set of input vectors and a prescribed classification. The NeuralGraphics software
requests a file name on initialization which is used to fill a pool of exemplars. An
exemplar is selected randomly from the pool whenever the makeinput routine is
called. Also, the routine ensures that in addition to random selection on exemplar
number, there is also random selection based on class type. This prevents excessive
training on a single class, when the classes are not evenly distributed in the input
file.

3.3.8 Measured Data With measured data, the data is contained in a data
file. These files can contain any type of information. In general these input files

contain a data set which exercise a particular area of investigation or data that has

28

been measured by a real system. The Ruck data is a collection of Zernike moments
: (Born and Wolf,1964) calculated from laser radar images of tanks and trucks. The
file could just as easily have contained data from frequency analysis of speech or
spatial frequencies of character data. A neural net should treat any type data in a
similar manner. The file also must contain header information relating to the length
of the input and output vectors and number of exemplars and classes. The data
is composed of a.n exemplar number, the vector quantizations and finally the class

identification.

3.8.4 General Purpose Functions The MAKEINPUT package contains other
modules necessary for handling the data files. The three principle functions contained -
in the package allow for initializing the data storage, returning a random exemplar
to the main routine, and statistical processing of the data. The statistical function
is a stand alone program. By calling this program from the menu, the analysis is
completed and the program terminates. The statistica! package performs a K nearest
neighbor analysis of the data and displays the result.

3.8.5 The Fourier filter problem A special subroutine for the backpropag-
tion network demonstrates mathematically calculated input vectors. This routine is
contained in the Makeinput package. It is not intended to be part of the software
package, but serves as a template for problems that require calculated exemplars
rather than those taken from a file.

The MAKEINPUT routine for this problem computes an input vector based
on the sum of three sampled sine waves with an amplitude of one. The length of the
input vector is 'arbitra.ry, but once defined in the header information, represents the
Nyquist sampling imit. The output vector has the same length as the input vector.
The output vector represents the desired output in terms of harmonic components.
For example: if the length of the two vectors is chosen to be eight, the input vector

is formed by taking eight equally spaced samples of any of three possible sine waves,

29

sin(0), sin(t), sin(2t)... sin(nt). See figure 3.

There are n outputs, one for each possible frequency component. The output

vector represents the presences or absence of a specific fourier component.

In addition, a random phase is added to each of the three components. The
output is specified by the three selected sine waves. If a particular sine wave is
selected, that output value is one, if not selected as one of the three, its output
node value is zero. The hypothesis that a mapping from the input vector to a
Fourier analysis at the output seems reasonable considering that the sine and cosine

functions, together form a basis set of orthogonal vectors.

These types of problems can be used to test neural networks. One advantage of
neural networks is an amazing fault tolerance. Experience has shown that this fault
tolerance extends to the software as well. Consequently, many software errors only
show up as a degradation in training efficiency. Before a new neural network can be
used for measurements, it should be tested against one of these types of standard
problems. After validation of the net against a standard problem, the net could be
used to analyze measured data.

8.9.6 PROPAGATE - Using the net With the organization of the net in
memory, the net can begin to learn and classify targets. To use the net, the rules
for propagating the data from the input to the output must be specified. This is the
purpose of the Propagate package.

Due to the experimenta! nature of the presentation environment, a design goal
was to reduce the amount of software an experimentor would have to understand in
order to alter the code to suit a new experiment. Both PROPAGATE and TRAIN-
NET are the two modules which must be the shortest, cleanest and most precise
from a software engineering point of view. Altering the screen displays could require
a fair amount of expertise in graphics and program interfacing, but one would not
expect to have to change them very often. The PROPAGATE and TRAINNET

30

.

TP T
e i Ll Lt ¥ SUPCNLISSI S S

i

Neural Network Fourier Filter

lllllllllllll

Class B
Time Sampled Sine Wave

g
B
3
‘s
2

Input to the neural network is the sum of

three of n possible sine waves

Figure 3. Neural Network Fourier Filter

Note: Class A,B and C represent three of n possible sine waves.

31

PRAIPETT SN, TP S9N WURL F CHUUN B

-

[.-

packages would be expected to change with each new experiment, so a reasonable
effort is made to enhance the simplicity and documentation of the code.

8.8.7 TRAINNET - Teaching the net. The TRAINNET module specifies the
training algorithm for the network. Four versions of the trainnet were written, one for
each type of training rule. The package includes the backpropagation rule developed
by Paul Werbos (Werbos, 1974), as well as Kohonen type rules for unsupervised
training, counterpropagation by Hecht-Neilsen and hybrid Propagation developed as
a result of this thesis effort.

3.3.8 CHECKERRORS - Checking performance of the net. Network perfor-
mance is evaluated in two ways. First, training is periodically stopped and a test
set is evaluated. The second method checks the performance after every training
cycle against the current training vector. For a general evaluation of the neural net
performance, a set of training data is run through the net without training cycles
between tests. For a more specific analysis, using a data set different than the one
used for training, can show the validity of the feature set used to classify the targets.
The CHECKERRORS routine allows this type of checking mid-process by running
a quick test set through the cet, then measuring the performance. The actual test
set is specified in the initialization routine. When the data is read into memory dur-
ing initialization, the first line of the file specifies the number of training exemplars
followed by the number of test exemplars. This partitioning of the data allows the
CHECKERRORS routine to test the net with a set of vectors the net hasn't seen
before.

3.4 Program control

The program uses two devices for program control: the mouse and the key-
board. The mouse is used where specification of a particular node is required and the

keyboard is used for larger program control functions like reading or writing weights.

32

)

»

8.4.1 Event Driven Menu An event driven menu'is provided to control house-

keeping functions of the network. Event driven routines are more efficient than using
a keyboard poll. Event driven menus require a hardware event to call the menu
subroutine. No device polling is necessary. The event, in this case, is typing a
control C on the keyboard. A control C activates a hardware interrupt to the kill
address vector. The program has substituted the normal kill address vector with the

menu address vector.

While the main purpose of the menu is to allow the user to save and restore
weights, the menu also allo;u control parameters to be changed while training is in
progress. The menu display in the textport offers a series of selections. Selection of
a particular item will then prompt the user of the parameters associated with the
particular call.

8.4.2 DISPLAYNET The display routines refer only to the graphics portions
of the display. These include such functions as drawing the network weighta, drawing
the nodes, setting the colors, finding data ranges, and drawing color bars. The pack-
age is split int« .wo types of graphic routines. The basic set contains those functions
which are machine dependent. In general, a macro is used when possible to allow for
redefinition to other machines. Those which are not machine dependent are combi-
nations of the basic routines that are machine dependent. An example would be the
color bar routine. These two types of routines are included in the graphics package.
The group of routines which are specific to a particular topoloxy are contained in
the display package. In general, when the problem under consideration changes from
something like a Kohonen map to a counterpropagation model. The entire display
package is replaced. The graphics package is used as an include file so the process
of building a new display is somewhat reduced.

3.4.3 SHOWNET The SHCWNET packageintludes all the textport printing
and display routines. This package includes routines for display of a set of weights,

33

O A I

[A

Ay

P

output and input values printed in ascii format in the text port. Except for test
results, the subroutines are not intended for use in general operation of the network.
These routines are intended for use in trouble shooting when the program has been
altered. The exception is the showoutput function. Periodic presentation of both the
desired and actual output is useful in tracking the progress of the net. In addition,
the error information is displayed in the same module. Adding more information
during the SHOW subroutine is a matter of changing the “I”codes in line 10 of the
SHOW subroutine.

3.5 Summary

The material in this chapter outlined the major software modules which make
up the NeuralGraphicz environment. Although the package is self sufficient and
can be applied to almost any segmentation or vector quaatization problem without
code modifications, the nature of software dictates that sometime changes will be
required. The information presented, together with the code and comments, should
be sufficient for making changes to suit a particular problem.

The next section chapter two purposes: to document validations and testing
the system and more important, is to answer the types of questions the system was
developed to investigate.

The NeuralGraphics study environment is designed to function as a window
into the internal structures of neural networks. The following chapter will describe
the observations which led to the development of a new type of neural network, the
hybrid net.

L1

| 4

IV. Data Analysis

4.1 Introduction

This chapter has two purposes: first, to document the validation of the software
and second, to show how the graphics environment was used to construct a new
paradigm for training artificial neural networks. The hybrid network is the result of
examining learning characteristic for several types of neural networks, then amending
the learning rules to correct several weakness discovered. The hybrid network is
shown to be more efficient than MFB for ambiguous decision regions.

Several types of data are analyzed to validate the study environment. To
investigate the learning characteristic of MFB, error surface analysis software was
developed. Using a three-dimensional display, patterns of neuron weight adaptations
are presented for simple neural network problems. A Fourier filter problem demon-
strated the use of the environment with calculated exemplar sets. The last two
problems, consider two sets of data extracted from digital imagery. The Ruck and
Roggemann data sets are used to evaluate the features selected for neural network
analysis. The analysis of these data sets is used to contrast numbers of training cy-
cles and accuracy for Kohonen maps, the multilayer perceptron, counterpropagation,
and hybrid propagation.

4.2 Error Surface Analysis

This section will discuss an experiment in error surface analysis used to examine
the adaptation of neural network weights while training. Two methods of adapting
weights are examined and compared.

A neural network node is the fundamental unit of an artificial neural network.
It is composed of an input vector, a single output, and a set of interconnecting

weights. A node also includes a rule for propagating the input to the output, and a

35

S ~U R B " ICIRRY N I

RN P4 |

it -

[APE

W

rule for training the weights. Three types of nodes can process analog input data.
These three types of nodes are the back propagation nodes, the Kohonen nodes, and
similar to the Kohonen nodes are the counterpropagation nodes.

To investigate the process of error reduction by adjusting the weight vector,
each type of node will be considered in turn.

4.2.1 Error Reduction by Back Propegation of Errors Back propagation of
errors was developed by Paul Werbos (Werbos 1974). In recent work, a modification
to back propagation has been suggested by David Parker (Parker,1986) called second
order learning. To understand how these algorithms reduce error, a visualization tool
is included with the package to track the error as the weights adapt toward a solution.

4.2.2 A Simple Classification Problem The first artificial neural network sys-
tem considered is the simplest system possible. The simplest problem associated with
a neural network would be that of a siagle neuron with two weights attached. The
classification problem is to differentiate between two points in the decision space.
Use of only two weights will allow plotting of the system error as a function of two
values, W, and W,. A value of one is used for 8, the threshold.

Two points are arbitrarily selected: (2,1) for class one and (1,1) for class zero.
Now, the amount of error for any two arbitrary points can be determined by the

relation:
error? = (1~ f(zy o wy + 31 #03))* + (0 = f(z2 * w1 + y3 + wy))? (1)

The function f(w;,w,) is a limiting function as described by Lippmann (Lipp-
mann,1987). This demonstration uses a sigmoid function to ensure differentiability
as required for the back propagation rule. This function is sometime called a squash-
ing function, because the output is squashed between zero and one. The program is

run a number of times with the results shown in figure 5.

. e— e o

L

Sigmoid Output \

bt A Class One %,

The Decision Region

The Simplest Network

Figure 4. Simple Neuron Problem

In Figure 5 the red and yellow tracks show the change in weights fron. the
random starting point to the final convergence point. Red areas on the plot indicates
those areas with the greatest amount of error and blue represents the lowest amount
of error. Weights are plotted with w, on the z-axis and w; and the y-axis. The three
dimensional plot shows height of the error surface on the z-axis. The graph in the
upper right hand corner exhibits the line found by the neural network which divides
the two decision regions.

Two point problems are of little interest because of the simplicity of the error
surface. The problem is made arbitrarily complex by adding additional points. The
example in Figure 8 considers six points for classification. The equation of the error
surface can be generalized to include an arbitrary number of points.

ervorton, n)? = 3-(doft; = f(zc w + 3+) @)
Considering weight values between positive and negative two, an error surface
is constructed to show the relative error for different values of 4y and w2. The results

are shown in Figure 8.

3

varidada
[PEPS N
&

-

beast?s

(VRSN Ie X

Error Surface: Low Eta

Point

Six

error surface. Note the small step

Eta = 0.3 Momentum = 0.0

L)

igure

F

No matter where the

they move toward the lowest point on the
of low error.

ghs start,
size in areas

Note

Figure 6. Six Point Error Surface: Large Eta

Note: For larger eta the step size seems larger.
Eta = 0.8 Momentum = 0.0

W

:
Ll R L E N
'S .

Y — S

Note

——— o e

§
!
51
i3
“ §
“ 38
: §
= g
W.

Eta = 0.3 Momentum = 0.2

e

- -

Figure 8. Six Point Error Surface: Large Momentum

Note: The values offered the best compromise between good movement in the low
error slope regions and yet lack the wild swings of the high slope regions.

Eta = 0.3 Momentum = 0.8

The experiment was repeated several times using different clusters of the exem-
plar points and randomly selected initial weight setting. Each initial weight setting
relates to a new starting point on the error surface. The yellow tracks in Figures 8
and 9 show the weight values adjusting from higher values (red and green) into the
blue regions that indicate a the lower error. Figure 8 shows the reduction of error
for a Werbos back propagation rule, while Figure 9 shows the decent down the error
surface of a second order algorithm.

The error surface routine demonstrates how the weights adapt from the random
starting point, to the region with the lowest error. While the second order algorithm

PO

P vMWMﬂ

Figure 9. Second Order Algorithm

Note: The error reduction is smnother, but sometimes misses altogether as noted
where the line goes off the screen.
Al =02 A2 = 0.0 A3 = 0.0 A4 = 0.1 A5 = 0.05

showed a smoother flow acroes the error surface, the first order seems to find the error
minima with fewer training algorithms. Second order adaptation requires adjustment
for four coefficients. (Piazza, 1988). Examination of the error surface ensures that
use of first order algorithm is sufficient for the following problems. Of the five
coefficients necessary for second order back propagation, two are also required for

the first order algorithm. One is the standard 5, or training rate, and another is a
term which Lippman calls momentum (Lippman,1987).

Momentum sometimes has the effect of decreasing training iterations, while at

the same time may avoid local minima.

T~ T —

{

1man

. empappp
(4 I4 LY

Figure 10. Second Order Algurithm
Note: Reducing the value of Al to 0.1 improved the performance.

Al = 0.1 A2 = 0.0 A3 = 0.0 A4 = 0.1 AS = 0.05

4.2.3 Self-Organizing Nodes No graphic tools were developed to analyze the
Kohonen and counterpropagation node. Their learning paradigms is fairly straight
forward, with the weight vectors moving toward tle input vectoss. Neither of these
types of nodes is capable of classification on its own, each of these nodes performs a
simple correlation with the input vector.

In the case of the Kohonen node, the correlation is a measure of the Euclidiau
distance between the weight vector and input vector. The counterpropagation node
uses a dot product multiplication to correlate between the two. In either case, the
weight update rules cause the weight vector to move toward the input vector.

The output of a Kohonen node is usually based on the values of adjacent

43

nodes. For example, only the node with the lowest distance or higliist correlation of
a layer of nodes is passed to the output or next layer. The rest are sometimes set to
zero. The learning process in self-organizing nodes specifies that only one or several
adiwent nodes are adjusted with each training iteration. The effect is to allow one
node to capture a particular region in the decision space. The weight vector for a
particular node will be equal to the average of all the input patterns for which it has
been updated. "

The counterpropagation node is in most ways equivalent to the Kohonen node.
The difference is related to the type of data which is being classified. The counter-
propagation node expects normalized data. otherwise the dot product will be scaled
and the correlation of the weight vector with the input vector would not be valid.
All input vectors must lie on the unit hypersphere. When the data is derived from
transducers or instruments, the measurements for similar patterns my be uniformly
scaled. Normalization removes the effects of this scaling.

4.2.4{ Results First order back propagation of errors seems sufficient for any
simple classification problem. Using a value of 0.3 for 7 and a value of 0.8 for
momentum seemn sufficient for training. Higher values didn’t seem to make any
difference in training times.

The smooth rounded tracks of the second order algorithm indicate excellent
error correction. However, due to the computational complexity of computing each
correction, the first order algorithm was selected over the second order algorithm.
Piazza’s work with larger network showed that although the second order network
does out perform first order networks, the improvement is small and may not justify

the additional computations (Piazza,1988).

With selection of a training algorithm, the next section discusses an applica-
tion of the training routine to ancther simple problem, identification of cosines in a

random signal.

o

Kool or Tl WLEIIC SIS JE00 WIS R s S SR . e e e e e e teie -

4.3 Feedforward Networks as Fourier Filters

This section will describe an experiment in which a back propagation network
is used to identify the presence of specific components in a harmonic signal. The
experiment was devised as a simple prototype on which to build the graphic displays.
Although the experiment was successful, the purpose of the program was to identify
which elements of the network should be displayed in graphics format.

The equation describing the calculation of the digital Fourier transform looks
like it could be represented as a description of weights in a neural network.

N-1
Xo(k) = 1/N Y zo % cos2xkn/N — jz sin2xkn/N (3)
sl

The output of a specific node is given by Xy(k) the inputs are the z,, values. With k

output nodes and n input nodes a system could be implemented to generate Fourier
transforms by setting the weights using the equation:

Weights = cos2xkn/N + jsin2xkn/N. (4)

To adapt Fourier analysis to a neural network, the problem is modified to take
advantage of the strengths of neural networks.

To reduce the problem to a manageable size, only the in-phase (cosine) com-
ponents will be considered, and not the quadrature components(sine). Further, only
the actual presence of a component will be detected and not the magnitude related to
that component. Although it appears conceivable to calculate coefficients, it would
not be a good pattern recognition problem. A problem consistent with the intent
of pattern recognition would simply indicate the presence of a Fourier component in
sufficient strength to fire an output node.

A similar problem, calculating quick approximations of periodic data is dis-
cussed in detail in the thesis work of James Straight. His work pays particular atten-
tion to time projections based on the past history of the input data. (Straight,1988)

45

b e g - —rea - e~

Figure 11. Fourier Filter Neural Network
Note: The position of the three red output nodes indicate the input pattern contained
the sum of #in2¢, sin3t, andsinSt with ¢t between zero and 2r.

The back propagation algorithm requires the output to be in the form of a
differentiable squashing function. The most commonly used is the sigmoid (Lipp-
mann,1987). To generate magnitudes at the output would require using a mapping
function to recover the desired output from a sigmoid function. This complication
will be avoided by using only unit valued Fourier components in the input, and train-
ing to only desired outputs of one or sero. To train the network to generate actual
components of the Fourier transform is beyond the scope of this exercise.

4.3.1 Making the Input and Output Vectors The network consists of an ar-
bitrary number of input nodes with an equal number of output nodes. Several
variations in the size of two hidden layers were tried. The elements of the input vec-

46

tor are formed by taking time samples of the sum of three sine wave. For example: if
the network topology consisted of n nodes, three values of n were selected raudomly.
The three sine wave are added together. The sine wave were selected from: sin t,
sin 2t, sin 3t ...sin nt. Time sampies of the composite waves are used as the input

vectors.

Before time sampling an arbitrary phase is added to each of the samiples.
Arbitrary phase is added to each signal to ensure the internal representation of the
input vector is related to the Fourier decomposition. An early experiment neglected
adding a phase component. Consequently, the training effort was greatly reduced,
which indicates that a simpler internal representation was detected by the network.

The resulting signal (input vector) is fed as input into the neural network. The
output is calculated and compared to the desired output. In this limited problem
three of the output nodes should contain one, and N-3 will contain zero. Evaluation
of the system consisted of considering one of the fundamental problems of neural
aetworks, finding the optimum number of nodes.

It was noted during analysis that the greater the number of connections, the
more complex of a problem it could solve. For example, with no hidden layers, the
neural network would converge as long as the phase component remained zero for
all components. By adding two hidden layers, random phase could be added to the
signals.

4.3.2 Results A number of measurements were made with the results shown
in Table 1.

The experiment demonstrated that neural networks can learn Fourier analysis,
although no evidence exists to show that the internal representation discovered by
the networx has anything to do with Fourier analysis. The data set for these initial
classification experiments, was statistically homogenous because each of the n pos-
sible Fourier components was selected with equal probability. Also, the amount of

47

11

Ly

AU

1

Figure 12. Neural Network Fourier Filter

Note: This topology was used to represent a six input Fourier filter. Tke input is :
the time sample sum of thiee sine waves with random phase. The three red dots at s
the output show which components are being detected.

phase added to each sine wave component was selected randomly using a constant
probability. Consequently, an infiaite number of possible combinations of random -
phase and components was possible forming an infinite training set.

Real problems usually lack this advantage. Measured data tend to have data .
point clustered together, with indistinct class separation boundaries. The next sec-
tion introduves some of the problems inherent to measured data, and an approach
to solving these types of problems. This approach, called self-organization, attempts
to map the input data into a more logical decision space reducing the complexity of
the classification problem.

Input | First | Second | Outputs ’I?ainin_g Cycles | Correct
4 4 4 4 20,000 .22

4 8 8 4 20,000 .82

4 16 16 4 20,000 .95

8 16 16 8 20,000 97

10 20 20 10 10,000 .95

16 32 32 16 10,000 .95

Table 1. Fourier Filter Nodes vs Training Time

{-4 Self-Organization of Data

Lippmann and others bave shown that the multilayer perceptron approach to
problem solving is to the divide the decision region with hyperplanes in the first
layer then appropriately combune these regions with and-ing and or-ing functions
to generate class distinctions in the upper layers. Self-organization has been used
for some time in image processing data reduction (Kucsdwski, 1987). Kuczdwski
suggests using MFB as a self-organization structure. His algorithm uses a five layer
feedforward network which attempts to find a smaller internal representation of the
input by using the input vector as the desired ontput then trains on itself.

If there are fewer nodes in the hidden layers than at the output, the internal
nodes are forced to learn a set of lower dimensional features than were given at
the input. The reduction should be a more efficient pattern classification where
the reduced features can be considered as some scrt of basis function set. If the net
converges, these features preserve the distance metrics and can be used to reconstruct
the original pattern.

When the network is presented a pattern which contains more information
than the storage capability of the net, the best average match is selected internally
and used to generate the output. Kuczewski reports that the reduction in dimen-
sionality has no consequences until noise is added to the input vectors in which case
misclassifications go up significantly.

49

AL

1t

v-n[

~ g

e

o ceany am—r— o, -

= ——

For application to the ciassification problem, the bottom two layers may be
extracted as self-organizing input layers, then used as an input to another network.

To test this means of self-organization, a five-layer network was constructed
and tested using a double disjoint region test set. After several hundred thousand
training iterations, the network had still not converged to a solution. The network
had difficulty finding a solution because of the weight update algorithm used for
lower levels. As more layers are added the backward error propagation becomes more
diluted with each level removed from the true error measured at the output. Az more
and more hidden layers are added, training time increases significantly. When the
reason for the failure was understood, this line of investigation was dropped.

Perhaps a network which trained from both ends toward the center could over-
come the dilution of the error. Such a network could use self-organizing based
training at the input and backward error propagation at the output.

Although the application of MFB as a self-organization tool has been demon-
strated by Kuczdwski, application implies greatly increased training times which
is an unacceptable liability. Use of Kohonen maps to set the weights for an MFB

network may offer a better solution.

4-4-1 Kohonen Self-organization Lippmann suggested that back propagation
of errors works by using the input layer to construct hyperplanes to separate classes.
The upper levels appropriately combine regions formed by the hyperplanes to allow
classification. To increase the efficiency of each input node, it may be possible to
construct these hyperplanes based on the statistics of the data. To explore this

hypothesis, this section examines Kohonen self-organization.

4.4.2 Kohonen Self-Organization and Simulated Data Using an early outline
of Kohonen's self-organizing algorithm (Kohonen, 1987), a display was designed

oo el

i

to evaluate different distributions of juput data. First a two dimensional input
50 1
st UG,

is constructed, then a three dimensional, then finally an n-dimensional input. To
investigate this self organization of data with respect to the Ruck and Roggermann
data sets, a Kohonen map is constructed which accepts file data as inputs.

An important aspect of biological neural function is the ability to organize
neurons in response to stimulus. Kandel and Schwartz believe that the placement of
neurons is orderly and reflects characteristics of the data being sensed (Kandel,1983).
Kohonen maps attempt to dupiicate this ordering of data without respect to any
particular classification of data with the self-organizing feature map.

The environment includes a Kohonen map demonstration designed for a high
resolution graphic display. The first display demonstrates self organization of ran-
domly selected two dimensional data. The pre+sntation allows for exhibition of the
weight vectors, a decision region map, and a display of the actual data point being
presented to the neural net.

The user may select any of a number of statistically distribution patterns for
training the network including gaussian, random, chi-squared. In addition, the data
may be distributed over limited regions such as, squares, triangles and crosses. The
net was trained a number o times to verify that the nodes is distributed over sta-
tistical optimum regions as predicted by Kohonen (Kohonen, 1986).

In Figure 13, a square bounds a region of gaussian distributed data. The input
distribution box shows a plot of the points as they are presented to the net for
training. The yellow Kohonen decision region map shows how the Kohonen output
nodes are distributed across the input data. Each intersection of lines represents
a Kohonen node. The position of the node is set according to the corresponding
position of the weight vector in space. Since only two weights are connected to
each node, the node can be regarded as a position in the decision region. Notice
how the nodes reflect a Ligher concentration in the central region where there has
been more data presented. To facilitate tracking data, nodes in one corner are
colored white, while the remaining nodes are colored magenta (purple to everyone

51

41 L.

Figure 13. Gaussian Distribution over a Square
Note: Grid line are closer together in the center where more data has been presented.

but computer graphics specialists). The color code represents an arbitrary partition
into two classes. In every distribution, the white samples will represent 25 percent
of the input data.

As you can see from Figure 13, even though the white dots occupy only a
small region of the input vectors plot, on convergence, they occupy one quarter of
the Kohonen map nodes.

This is always the case (under ideal conditions). The number of nodes per
class is proportional to the distribution of the classes within the entire data sample.

Looking at the Kohonen decision region map, the yellow grid lines are closer
near the center than on the fringes. This represents how the decision region allocates

52

RS

Figure 14. Gaussian Distribution over a Cross

Note: Number of white nodes is about 25 percent just as white input data is about
25 percent.

more hyperplanes to the regions “«bere there is a higher concentration of data. Each
intersection of a grid line ».;::esents a Kohonen node. This self organization of data
used as an input layer to another type of network may improve the performance of
a network with synergism between the two layers. ’

4-4.3 Kohonen Self-Organization and Mea-ured Data When the two dimen-
sion problem is extended to three dimensions the resuits began to break down. If a
Kohonen preprocess of the input data is expected to be useful, then each node must
become a clear winner for a particular class. With three inputs to the Kobonen

petwork the results were mixed.

— e ¢ o e

Although, clustering of the nodes to a distinct class was exhibited, a number
of nodes were isolated away from-the central group. fwiner, dynamic analysis of

the net revealed that under training, nodes were changing from one class to another.

When the Ruck data was used to train the net, the effects were more se-
vere: isolated nodes, disjoint groupings, and inconsistent winners. Obviously, self-
organization, though proven with ideal data sets, will require some modification to
the training algorithm for use with less than perfect data. These deficiencies are
also reported by Robert Hecht-Neilsen (Hecht-Neilsen,1987) and Dan DeSieno (De-
Sieno,1987) and others,who propose several improvement of the training method.
The modifications were included in later models using Kohonen self-organization as
part of the network. However, these improvements were not added to this particul.r

semonstration.

A later section will discuss implementation of these improvements. The next

section will return to MFB. While, self organization is proposed as a method to '

optimize neural network topologies and training complexity, self-organization lack a
fundamental capability necessary for pattern recognition.

The next section evaluates MFB with respect to measured data, and the fol-
lowing section can discuss combination networks.

4.5 Back Propagation of Error

Kohonen maps cannot perform classifications, only create a self-organized clus-
tering of the input data. Additional effort is required to relate these clusters to a
particular classification. In the next section back propagation, used with the Ruck
and Roggermann data, is consider for the classification mechanism. Back propa-
gation will be used to bridge the gap between organized data and classified data.
This section will discuss two critical issues related to neural networks: numbers of

interconnections, and training difficulty.

e

Figure 15. Kohonen Map of Ruck Data

Note: Data of similar classes indicated by color does not cluster and many node
remain unused.

|
!
s
§
)
1;

Using artificial neural networks to solve pattern recognition problems requires
a tradeoff analysis between system requirements. For an optimum system, the com-
putational complexity must be minimized while at the same time maximizing the
classification accuracy. Not only are the two requirements usually mutually exclu-
sive, the relation between these goals is not well understcod and are complicated

even more by real world considerations i.e. multiplicative and additive noise.

4.5.1 Classical Analysis for Pattern Recognition The method of k-nearest
neighbors is used for the initial evaluation of the Ruck and Roggermann Data. Clas-
sical methods for pattern recognition dictate using an Euclidian distance measure-
ment to the nearest neighbor exemplar pattern. These distance measurements are
compared to the k nearest vectors around the test vector in hyperspace. If the ma-
jority of the neighbors are a specific class, the exemplar is classified accordingly.
The Ruck and Roggermann sets were analyzed using this criterion. The results are
a measure of the internal consistency of the data. Table 4.5.1 shows the results.

Neighbors @ermnn Target | Roggermann Image | Rack Image
1 T3 82 83 |
3 ” 76 75
5 78 T 67
7 78 73 71
9 7 76 73

Table 2. Nearest Neighbors Percent Accurate Classification

Table 4.5.1 shows, for the three data sets considered, what percent of the
exemplars would have beeu classified correctly if the decision criterion was the class
of the majority of neighbors. Column one indicates the number of nearest neighbors
considered.

Nearest neighbor analysis shows that the data lacks internal consistency. For

any classification scheme to work well, the data should be clustered in some manner.

The table measurements demonstrate that at least about 25 percews of the time, for
all three data sets, the nearest neighbor represents a different class. This certainly
can affect neural network training. It means that at least one quarter of the time
the exemplar pattern conflicts with previous training. In effect the net is being lied
to. The result of such lying is that training time is increased, and the net size musi
be increased. To accommodate such irrationality in the data, the network must

memorize the irrational exemplars on a one by one basis.

To test this hypotbesis a double disjoint test set was constructed and used to
train a MFB network. The test set consisted of four, three-input vectors divided
into two output classes. The network could solve this problem with a 2-3 network
in about 80 training iterations. The notation 2-3 indicates two nodes in the second
hidden layer and three in the first. The notation relates to the graphic displays, with
the number of nodes nearest the output, at the top of the screen coming first.

The number in the other layers, input and output is fixed by the problem. By
adding a fifth vector which was very clcse to the forth vector and defining the class
as different, it takes a 20-30 network with 30,000 training iterations. By adding only
one training vector, the complexity of the problem was increased by a several orders
of magnitude. This is a constructed example of an ambiguous decision region. Am-
biguous decision regions are the weak point of back propagation. Any improvement
to back propagation would need to address this problem.

For these reasons, to determine the size network for a particular pattern recog-
nition problem, consideration must be given to the structure of the input data. The
size of the net is related to the number of separate clusters of data in the decision

region. If the structure is unknown, the only alternative is trial and error.

Analysis of the Ruck and Roggermann data sets partially demoastrate this
hypothesis. Simple back propagation netwcrks were used for analysis with similar
results. The dynamic analysis tool was used to identify exemplars which the network

had trouble learning. When these exemplars were removed from the traicing set,

57

M g 4

Many disjoint regions

OO ©
O06 -

Note: The number o1 disjoint regions in the

decision space does not completely dictate the
number of planes required for seperation.

Ambiguous regions

Note: For good classification the net must place
the division in exactly the right spot.

Figure 16. Disjoint and Ambiguous Decision Regions
Note: Multiple disjoint decision regions problems are easier to solve than ambiguous

decision region.

the percentage of correct classification became near one hundred percent.

For the details of the Ruck and Roggermann data analysis, se= the appendix
A and B.

The number of independent decision regions could be determined using self-
organization methods. A siungle layer Kohonen offers a sort of pearest neighbor
classification where each output node classifies a particular decision region. Each
node, in fact, measures the distance between the average of a number of exemplars
just like a k nearest neighbor classifier.

The result of using Kohonen type mapping as an input to another type of net-
work is an intermediate, unclassified representation of the input. The complexity of
the data to the output layer is greatly reduced and the requirements for construction
of the classifying layers are better understood.

The principle drawback to the generalized self-organizing net is that the un-
supervised reduction of the decision region may not result in a distance preserving
mapping. Such is the case when the input data is greatly interspersed. It seems
that examining the number of nodes required for showing clear winners, that is all
nodes are not winaing for one claas then later winning for a different class, would
give insight into the number required for a supervised multilayer perceptron model.
Ambiguous input data is the greatest hinderence to MFB neural network training.

The next section will discuss a method to reduce the network size for back
propagation networks. This method was suggested by Siestma (Siestma,1€87). The
technique is called network pruning.

4.5.2 Neural Network Pruning The initial weight setting affects delta rule
training as well. When v:ing random numbers for the initial settings, sometimes the
network will train quickly and sometimes, not so quickly. J. Sietsma has suggested
there are additional consequences of poor initial settings. She feels, and experiments

have demonstrated, that sometimes m: ve nodes are required to find a solution using

59

— e o e aa ...

T P T e o YL 4 e e e

a given weight update zlgorithm, to a mapping];roblqn than are actually required

for a minimum node solution.

As a feedforward back propagation network trains, it appears that some nodes
contribute early on, pushing all the weights in the general direction of a soluticn,
but in the end become unnecessary.

Az weight values approach a solution, one of several thicgs can happen to a
node. First all the weights connected could converge to zero. In another situation,
weights will line up with another set of weights causing redundancy. This occurrence
has a reciprocal as well; a set of weights leaving a node can duplica.e the comrliment

of another set of weights.

Analysis of the weights for redundancy ana impotence would be difficult to
automate, but the consequence of these things could be determined by dynamic
analysis of node firings. Candidates for pruning could be determined by observing

their action under training.

The easiest to spot is a stuck node. Any node that fires all the time regardless
of input, can be eliminated by adding, individually, the value of weights to the
threshold of the node above it. The second way is to identify tandem nodes. If two
nodes are acting in tandem, one can be eliminated. The converse is also true, if two
node are acting in compliment to each other, that is, one is high while the other is

low, one can be eliminated.

Experiments with node pruning have shown that a large node configuration can
be reduced to a very small configuration. Using the Ruck data, a two hidden layer
20-26 net could consistently be reduced to a 6-5 net. While consistent convergence
could only be obtained on the larger net, occasionally convergence could be obtained
with as small as a 5-5 net and still retain 100 percent accuracy on the training set

and 74 percent accuracy on the test set.

Node pruning demonstrates that fewer nodes are needed for an implementa-

ey

W

tion of a neural net problem than are actu'ally ‘necessuy for training. Still while
pruning is useful for back propagation network optimization, it left unanswered the
basic question. How many interconnections are require to solve a particular prob-
lem? Kung (Kung,1987) tries to answer this question by using algebraic projection
analysis.

The number of hidden units per layer dictate the space partitioning separability
of the network. The more units per layer, the finer the partition of the decision region.
The work of Kaczmarz suggests that the number of nodes required can be calculated
(Kung,1987). Unfortunately, a priori knowledge about the decision space is required.
This restriction is not acceptable iu most real problems as decision region topology
cannot be determined without statistical analysis of the data.

The solution may lie in self-organization techniques which map the input data
into well behaved functions. These functions could take advantage of the Kaczmarz
Algebraic Projection technique by forcing the data into a well behave decision space.
A candidate is the Kohonen learning rule.

Unfortunately, as shown previously, the Kohonen decision regions are not al-
ways well behaved. A first effort to study the integration of two system is the
counterpropagation network. The next section discusses counterpropagation which
may be modified to make the decision regions better behaved.

4.6 Counterpropagation

Counterpropagation networks (CPN) are described in an article by Robert
Hecht-Nielsen (Hecht-Nielsen,1987). A CPN network was implemented in the lab
without good results, except for simple problems.

Counterpropagation is a multilayer feedforward network with a Kohonen orga-
nizer on the first layer with a Grossberg outstar on the second. It has two additional

layers use to train the network.

61

Lt ..

-

t 1 N BRARS

;]

’ D

1

Figure 17. Counterpropagation

The counterpropagation algorithm was implemented exactly as suggested by
Hecht-Neilsen and tested against the Ruck and Roggermann Data. Classification
accuracy was significantly less that the accuracy from a MFB. On the Ruck data,
while 100 percent classification was a achieved on the training set, only 50 percent
accuracy was noted on the test set. The MFB classified at 100 percent training, and
74 percent test. See appendix A and B.

As suggested by Donald Woods et al (Woods, 1988) two modifications were
made to the Kohonen layer of the counterpropagation. Woods, Hecht-Neilsen and
Deseino all suggested conscience be added to counterpropagation and Kohonen maps.
Deseino suggested an implementation. (Deseino, 1988). A Kohonen layer with a
conscience is the first step to the hybrid network.

R P U

£ O

1

| I

e

4.6.1 Conscience Experiments related to the thesis effort, indicate that Ko-
honen works well for data sets calculated from some types of probability functions.
For example, a two dimensional input based on a variety of probability density func-
tions, including constants, Gaussian, and chi-squared were tested. By defining a
region in space to be a particular class, then color coding the classes, data clustering
could be tracked by noting winning regions on the Kohonen map. Clases seemed to
separate well for calculated data. As expected, the number of nodes which won for
a particular class was related to number of times the class was used as an exemplar.
The results were mixed for higher dimensional data. Three and four inputs were
tried, and completely fell apart for measured data like the Ruck and Roggemann
sets,

Because of the mixed results, modifications to the Kohonen training were con-
sidered. A few suggestions were found in the literature. Rumelhart and Zipeer
suggested two things. The first was to add a distance bias to each processing el-
ement. If a node \ins a competition the threshold is increased so the chance of
winning is decreased. The second was to update not only the winning weights and
neighbors, but the losing weights as well just not as much.

Both fixes would tend to force losers, as well as winners, toward the centroid
of the input data vectors. Duane DeSieno suggested an elegant algorithm for imple-
menting these concepts. He called it a conscier:ce.

The process requires adding a data structure to the Kohonen net. The scructure
can be implemented as an array equal in size to the array of Kohonen nodes. For
discussion purposes, these are referred to as probability bias nodes.

The algorithm impacts the training rule in two places. First in calculation
of the probability bias and second in the calculation of the winning node for the
Kobonen competition. The actual update of the weights remains the same.

Y e

Al

Ll

fal

i

e

The probability bias array is filled according to the formula:

pr™ = pi + B(yi - p3) (5)

The constant B is an adjustment parameter. DeSieno suggests 0.0001. C is a constant
which controls the influence of the conscience. The larger C, is the more probable
that all nodes would win the competition an equal number of times. A value of one
was used for these experiments. The rule to select the winner of the competition is
modified to add a bias term to the distance before selecting the winner. The bias
term is:

b = C(:/N - p)) (6)
where N is the number of nodes in the competitive or Kohonen layer. The conscience
rules were implemented on a hybrid Kohonen-perceptron net with good results. After
implementation, it becomes obvious why many Kohonen nets don't work well for
measured data. All the data points are closer to each other than any of the randomly’

set initial values. A handful of nodes will dominate the training. The rest will never
be adjusted.

The experiment offered insight into several elements of Kohonen training. One
consideration is the relation of the initial weight settings. If the initial weight settings
are orders of magnitude away from the input vectors, the first vectors adjusted will
dominate the training. In other words, if the initial neighborhood size doesn’t cover
the entire map, any vector not adjusted the first time through will probably never
win a competition again. If the magnitude of the training vectors are all very large

and the initial weights are set small, on the first pass one weight will win and there
after, always win.

Conscience inserts a probability bias into the distance comparison before the
winner is selected. Consequently, all nodes should have an equal probability of firing.

A difficulty was encountered selecting the parameters B, and C. Work with the
hybrid model suggests that the value suggested by DeSieno is not generally applicable

64

[R \

Rl

W

to all problems. Using a value ten times his value yielded better results. The other
value C should be fixed at one. DeSieno actually uses two adjustments where only
one is needed. Either of the two equations could be used for conscience alone. A
more intuitive approach would be to set the probabili'ty bias to:

pi SMM;/COUNTM—I/N (7}

count; is the number of times a node has won. Barmore arrived at a similar
equation independently (Barmore, 1988), he uses a win rate disparity of 1.5 before
the conscience inhibits a node from winning. When B is eliminated, and C in the
second equation becomes a relation between the excess wins, a small number between
(-1/N) and (1/N - 1), and a weighing factor which allows the conscience to kick in
sooner. The difference between the DeSieno method and that used here is that if
P: is greater than an arbitrary small value the node is remove from the competition
completely. The DeSeino equation has the effect of a weighted, conditional removal

based on the number of times a node has won.

Both equations work well, but the second is a little easier to adjust to different
ranges of data. The results demonstrate why a counterpropagation model has little
chance of working outside of well behaved input vectors and initial weights set to
represent a distribution similar to the training set.

4.6.2 Weaknesses of Counterpropagation The counterpropagation model has
three primary weakness. It lack conscience; usually, only a few nodes win the distance
competition for most real data sets. Second, with normalized inputs all vuctors are
mapped to the unit hypersphere. Finally, counterpropagation isn't able to solve the
disjoint region problem well.

Since the input vectors must be normalized, exemplars are limited to the unit
hypersphere, no differentiation can be made between vectors which are related by a

scaling factor. The problem can be overcome somewhat by minimizing the distance

65

R s el b et o b T

measurement instead of maximizing correlations. In this way both (1,1), and (2,2)
will be mapped uniquely in the decision space. This difficulty is overcome by re-
placing the dot product of the input with the weight vector, with a simple distance

measurement.

A third weakness is partially a result of using the Grossberg outstar for c-.-
sifying the disjoint regions. To solve a disjoint region problem the outpu: to the
classifier shov'd have an unambiguous one or zero at the output node. J£ a Kohonen
node sometimes wins for class a and somstimes for class b, the outstar weights will
oscillate between the two. Convergence is not possible. Using cunscience can ensure
a more efficient Kohonen layer to prevent ambiguous nodes, that is nodes which fire
for either class.

4.7 The Hybrid Network

By taking the weaknesses out of the counterpropagation network a more pow-
erful network is established. A conscience is added to ensure maximum efficiency
of the Kohonen layer. A multilayer perceptron replaces the outstar layer. The final
step in constructing a bybrid net is to improve the interface between the Kohonen
and perceptron layers. The counterpropagation model passes along only one piece of
information to the upper layers, the Kohonen competition winner. The winner spec-
ifies which set of weights most closely reflects the input vector. More information
may assist the upper layer in making a classification. Hecht- Neilsen suggests passing
more information to the upper layer. He suggests passing not only the winner, but
second winner, third etc. The hybrid network inherits the same weakness, only one
node at a time can pass information to the multilayer perceptron model. To improve
the performance of the hybrid net a different interface should be used to pass more
information to the perceptron layers.

The obvious solution, to pass the distance directly, was tried with only partial
success. For small toy problems, convergence was fcund easily. The model was

66

Hybrid Propagation

ET]) Q Q T
a

With
! Conscience

Interface: 1/(A + distance)

Kohonen Nodes

Propagation Rule:
1. Find distance
2. Calculate Interface Value

3. Standard Backprop to next
layer.

Figure 18. The Hybrid Network

Note: First hidden layer uses kohonen update rules for weight adjustments and
Second hidden layer used back propagation.

constructed and tested. For noisier data, like the Roggemann set, convergence is not
possible for more than a few samples.

Figure 19. Hybrid Propagation Environment

The solution is based on sending a weighted composite f the winners. In other
words, a high number is sent for the winner, a sightly lower number for second and
%0 on. A convenient function that performs this conversion is similar to the sigmoid
function.
¢ zi=1/(A+k) ®

The value =; is a distance measurement for a particular node. A is a scaling constant
) less than one. A typical value for A is 0.05. This value inversely scales all distances
' to a number between zero and twenty. The improvement in the performance of the
net is dramatic.

The result of using Kohonen type mapping as an input to another type of net-

work, is a new intermediate, unclassified representation of the input. The complexity
of the data to the output layer is greatly reduced and the construction of the output
net is much better understood. Using a rule of thumb, three first hidden layer nodes
for every Kohonen node, the network always converged in few thousand training
iterations. Network pruning seems to reduce the number of interconnections even

more.

The difficulty of this approach is the intermediate representation of the data
may not be a good vector quantization of the input. Because the weight vector
associated with each Kohonen node tends towards the average of a number of close
exemplar, convergence is guaranteed if the number of elements in the Kohonen layer
is greater than the number of distinct decision regions in the input data. That is, if all
the nodes are used. This is something unknown a priori. The number is bounded by
the number of exemplar vectors used for training. As the number of Kohonen units
approaches the number of exemplars, the solution degenerates to a simple table look-
up without generalization. To test the hybrid network, it is important to demonstrate
exactly what type of problems are better solved using a new type of network. At first
it was considered that the hybrid net would scale better for iarger numbers of disjoint
regions. This hypothesis proved incorrect. Back propagation scales very well. The
reason, of course, is obvious. As the number of disjoint region increases, each new
region can take advantage of previous bhyperplanes to partition the decision region.
By appropriately placing the decision regions, sometimes no more hyperplanes are
needed to make the distinction. The real advantage was unexpected. By creating
ambiguous decision regions, that is placing two exemplars of dissimilar classes close
together, hybrid propagation performed better.

The first experiment involves using four exemplars with a fifth used as a spoiler.
The fifth exemplar was piaced a small distance away from the fourth exemplar as
indicated by the distance column.

y

Clear decision region

2 Ambiguous ngion
d:sta.nf;;e ! 2

Three inputs: x,y,z

Figure 20. The Hybrid Network Test Problem

-

These measurements are shown as five regions. In the second test tke num-

ber of spoilers was increased to four, consequently every decision region was made

ambiguous.

MFB Hybrid
Net Size | Regions | Distance { Cycles | Accuracy | Cycles | Accuracy
2-2 5 1 800 100 1000 100
35 S 0.5 | 10,000 100 1500 100
5-7 5 0.4 4700 100 1500 100
5-7 5 0.2 { 14,000 78 6000 100
5-10 S 0.2 | 20,000 87 6000 100
10-20) 0.2 | 20,000 85 5000 100
5-10 b) 0.1 [50,000 86 | 10,000 100
5-10 8 0.5 | 18,000 100 | 10,000 100
815 8 0.3 | 26,000 100 | 10,000 100
10-20 8 0.3 | 18,00v 100 | 10,000 160
5-10 8 0.1 | 50,000 0 2,500 100
10-20 8 0.1 { 50,000 0 5,500 100
15-30 8 0.1 | 50,000 0 5,500 100

Table 3. Back propagation vs Hybrid Net

Note: In every category hybrid propagation out performs Back propagation for this
class of problem. The problem under consideration is three input, two output disjoint
region problem. The first case uses five exemplars. Four are distinctly separable with
one ambiguous exemplar. The ambiguous exemplar is the same as a one of the other
exemplars, but moved an arbitrary distance away and the class is changed. This
distance is noted in ihe distance cclumn. The second case increased the number of
ambiguous decision region to four, each exemplar has a very close compliment of the
opposite class.

4.8 Summary

The hybrid net seems to work similar to a nearest neighbor classifier. The
operator selects a number of Kohonen nodes. The number is an estimate of the
number of decision regioas. In practice a few more are required due to inefficiencies
in the conscience. The Kohonen layer training moves the weight vectors attached

to these nodes toward the average of a group of exemplars. For example: if five

71

L

!

S PR W LI L

L

S

TR e e g P e e e

Y

Kohonen nodes are selected, then each of the five nodes would represent an average

of the group of exemplars in a region around them.

The experiment is based on the assu'..ntion that only a limited number of data
clusters exist in the decision space. If the training vectors are consistent then each
should lie within a reasonable distance of these data clusters. Given that the number
of data clusters cannot exceed the number of training vectors, it seems reasonable
to assume that the complexity can be controlled Ly limiting the number of vectors
used fou training.

The question becomes, how well does this limited set of training vectors relate
to the entire ensemble of input vectors. If the training set were perfect, the data
clusters would be identical to the number of classes. The worst case would be where
there is no clustering of data at all. In this case the number of independent decision
regions is equal to the number of exemplars. A typical case is some number in

between.

The hybrid net expects one Kohonen node for each data cluster. Because of
the conscience training algorithm, in practice more nodes are required to ensure
good separation between nodes. The back propagation network stacked above the
net assumed simple decision regions, and was set to twice the Kohonen layer for the
first hidden and equal to the Kohonen for the second hidden layer. Experience has
shown that for the simple, binary type output of the Kohonen layer, these values are
sufficient for convergence. Actually, using a multilayer back propagation net for the
output of the Kohonen layer is more than is necessary. For this simple classification .
problem Hopfield or Grossberg outstar would be more eflicient and train faster. The
back propagation method will allow continuous data as input vectors. This flexibility
allows the use of more complicated functions as the interface between the Kohonen

layer and the back propagation layer.

The hybrid Network offers a solution to two difficult problems encounter in

other networks. The multilayer perceptron requires long training times when ambi-

72

-l it cme e losm cad aat A s - R s TR S} o e ——— © et e e e e

guities exist in the decision regions. The counterpropagation network requires less
training time but is unable to solve the disjoint region problems without efficient
use of the Kohonen layer. The hybrid net offers a compromise. The hybrid net can

obtain k nearest neighbor accuracy in a few tens of thousauds of training iteration.

73

-—‘F’w[

™~

.
- e e -

V. Recommendation and Conclusions

Developing the hybrid neural network embodied four separate aspects or phases.
The major effort involved the development of an environment for dynamic analysis
of neural networks. Using these tools, the next phase involved the analysis of several
commonly used neural network topologies: Kohonen maps, back propagation, and
counterpropagation. After gaining insight into how the networks function, several
data sets were analyzed. The final step in the process was to take the information
gained in the first three parts of the study and develop a better learning process.
TLe results of these efforts are the Hybrid network and the NeuralGraphics software

package.

5.1 Graphics as an Analysis Tool

Graphical analysis of a neural network under training is useful in several re-
spects. The effectiveness of a particular node can be observed, tested or the node
can even be removed. The pruning function of the study environment was used to
demonstrate this. Weaknesses in a particular training method could sometimes be
detected. For example, graphic displays demonstrated that the Hecht-Nielsen Ko-
honen layer update rules resulted in only a portion of the nodes being used at all.
Once detected, conscience was added and the efficiency of the Kohonen layers for
both counter and hybr.d propagation was improved.

Error surface analysis allc ed two different weight update rules to be compared.
Progress of the error rediction as a function of training cycles could be tracked from
the initial conditions ‘o the final solution. So much could be observed in the displays,
that it wasn’t possible to investigate but a portion of the aiomalies noticed during
observation.

Spotting weaknesses in training methods is a useful application of graphics

to neural networks. The fact that the Kohonen nodes were not all contributing to

L

f—v—v—‘#-—'v~,

a solution, was obvious with a graphic display. Early versions of Kohonen based
classifiers showed that only a small portion of the nodes were consistently winning

the competition. This lead to the inclusion of conscience in the training algorithm.

Examination of the ranges in the weights lead to a better understanding of
“pathological networks”, network no longer capable of learnizcg. When the weights
are starting to grow without bound, no amount of training will bring the network
back toward convergence, and training could be terminated. Other anomalies were
noted as well. For example, it was noted that generally the majority of the weights
were zero. The first major cuntribution of this research was the graphics environ-
ment which allowed detection of network deficiencies. Discovery of these deficiencies

allowed new neural network training paradigms to be designed.

5.2 Criterion for measuring error

A difticulty was encountered in establishing a criterion for measuring the per-
formance of a neural network. When comparing the results reflected in this effort
with results of similar studies, different error criterion prevented exact comparison.
This study uses three methods to measure error. Each of the three methods varies

from a very strict criterion to a very loose measure.

For comparisons of one data set to another, it seemed most convenient to use
a very strict measure of error. A classification of correct for a given input vector
indicated that the difference between the actual output and the desired output was
below a specified threshold for every cutput node. For a non-ambiguous classification
a value of 0.2 was used. For a correct, but less definitive classification, a value of 0.5
is used.

Unfortunately, s the width of the output vector grew, as with the sine wave
proolem, the less likeiy it becomes for all nodes to classify correctly simultaneously.
Consequently, measured success of the network appears to go down. For the Fourier

filter problem, a minimal criterion is used. Percentage of error is based on each

75

. g - WY Ay Ny m o0 e re ey v e

independent decision. Changing the error criterion for the Fourier problem was
necessary to prevent misinterpretation of the results. Under the former method the
networks would show only 80 percent accuracy, while identifying each individual sine

wave 98 percent of the time.

Using and understanding different error criterion is important for two reasons.
First, for comparisons with other work, the methods used must be at lease relatable.
Second, unlike most problem solving techniques, the goal is not to determine a 100
percent accurate solution. The goal is to arrive at a reasonable guess as quickly as
possible. For these reasons, understanding the error criterion becomes central to
neural network study. Comparison of different techniques is a matter of evaluating
iraining times and classification effort for a solution that is arbitrarily close to 100
percent. If the completely accurate solutions are necessary, some technique other
than neural networks may be more appropriate. In the context of problems where
absolute accuracy is neces=ary, neural networks may be used to limit the search for

non-neural network solutions.

After establishing an error criterion appropriate for a particular problem, the
next step was to construct a network with the minimum computational effort. The
computation effort required for a given problem is related to the size of the network
and the number of interconnections.

5.8 Determining Network Size and Training Time

The questions: how long should the net be trained, and how many nodes are
required for a particular preblem ? occupied many hours in this effort. The author’s
conclusion is that the answer these questions depends almost entirely on the data.
For each problem considered here, the number of disjoint and ambiguous decision
regions in the data set dictated the size of the network required. Also, the results
seems to indicate that it takes a lot fewer than previously thought. A single node
seems very powerful. As pointed out by the Ruck and Roggermann data, training

76

e .
LR e e

B &1 IO

K S

K AT

until no changes are detected in the test set accuracy may be good enough for real
problems. It appears that any reasonable problem can be solved in a few thousand
iterations. Training after that point is an act of memorizing tLe special cases. That
is, when a tank exemplar is presented to the net for training and nearest neighbors
(in the decision space) are jeeps, the net must memorize what makes that tank
different from all the jeeps around it. Such memorization does not apply to real
world problems. Generally, classification will be made on unique data taken directly
from & sensor system. Not only is this memorization very expensive in training time,
but requires additional nodes to handle the meraorization of particuiar exemplars. If
the function of the network is table look-up, the additional resource may be justified.
But, if the data set is infinite, as data coming off the backplane of a camera would
be, a net only needs to learn generalities. Two factors were noticed which affected
the smallest possible network, momeatum and network pruning. A first effort to
establish a minimum node size tended to overshoot the optimum. Overestimation
may be a natural consequence of using a biological model. With the human brain
using hundreds of billions of neurons to solve problems, the temptation is ever present

to use more than necessary.

Network pruning is a good example. The first published analysis on the Ruck
data used a 100-200 network (Ruck,1987). Subsequent efforts here reduced that
number to 10-10. Network pruning reduced that number to 6-8. Using the momen-
tum term, reasonable results were obtained with a 3-5 net. With this information
the Roggermann data resulted in a 20-50 net which pruned to an 18-47. The authors
conclusion is that pruning is most useful when too many nodes are present. When
starting with a near optimum number of nodes pruning is only superficially useful.
The momentum parameter may be just as important as pruning.

Most of tbe first neural network models did not include a momentum factor
in back propagation algorithm. The computational effort to include momentum did
not seem a fair trade off for decreased training cycles. By saving all previous weights

s

—ry

- -

S e T L RTe e, T et B .
[P X L R o V. A ST VI It SLIL N

each time, computational effort was predicted to increase, at a rate greater than the
expected reduction in training time:

Late in this study, the Piazza work (Piazza,1988) suggested that momentum
carried additional benefits, benefits both in accuracy, and the ability to jump over
local minima by smoothing out the error surface. With the inclusion of momentum,
net size on the Ruck data reduced from a 10-10 net to a 3-5 net with only a tiny
reduction in accuracy (5 percent training data, nope for test data). No additional
benefit could be gained from pruning. Going from 200 nodes to 8 suggests that each
hidden node may be more powerful than previously thought.

Each node can be considered more powerful still, if a node is not expected
to memorize specific exemplars, but only general trends in all the exemplars. The
Hybrid network is an attempt to exploit this observation.

The second major contribution of this effort wa: the study of how network
training and node requirements relates to the proble.. vnder consideration. This
research effort showed what types of problems are difficuit and how these difficulties
can br avoided.

5.4 Application of the Hybrid Network

The hybrid network is an extension of Kohonen mapping and counter prop-
agatiun. Using a simple distance metric, hybrid propagation maps the exemplar
patterns into a new decision space. This new decision space seems to reduce the
burden on the back propagation classification laye. .

The Hybrid network required an additional layer of hidden nodes, so the train-
ing time increased some to allow the Kohonen layer to organize. Also, the first
hidden layer usually needed to be larger than the first hidden layer in back propaga-
tion alone. However, discounting the time to organize the Kohonen layers, training
times were reduced by a third to a half and the network showed a greater ability

78

Ao

bl Rl

L

to memorize. This ability was noted in analysis of the Roggermann target data
analysis.

In general, the Hybrid net works better than a multilayer perception for prob-
lems that include ambiguous decision regions. For small clearly distinct decision
regions, the multilayer perceptron seems to be more efficient more efficient.

The third major contribution of this research was the hybrid network which
outperformed other networks configuration for specific types of problems.

5.4.1 Summary Of the four neural networas considered, each had its own
strength and weakness. The Kohonen maps cannot solve classification problem
without some interface to a classification network. Both Kohonen and counter-
propagation were inefficient without augmenting the weight update rules to include
& conscience. Even with a conscience, the nodes were not one hundred percent effi-
cient, mapping one node to a one decision region. With a Multilayer perceptron, as
the number of disconnected disjoint decision regions increased, the number of nodes

required to solve the problem increased in a non-linear fashion.

The Hybrid network shows promise of being able to solve the the ambiguous
decision region problem of the back propagation algorithm. As dissimilar data points
moved closer together, the Hybrid network the number of nodes required seems
to increase linearly. Also, the Hybrid network is a useful tool for data analysis.
Still, more work could be done to improve the efficiency of the Kohonen layer. The
conscience rule doesn’t seems to map exactly from one decision region to one kokonen
node. This may be possible by using some other paradigm to traip ar set the size
of the Kohonen layer.

5.5 Recommendations

The Neural-Graphic study environment is like a window into a complex math-

ematical process. For every question, answered several more were raised. For ex-

79

ample, it was noted that generally the majority of the weights were zero. Most of
the questions associated with these types of observations went unanswered. Future

investigation may want to consider the effects of removing near zero valued weights.

In implemeanting neural network in dedicated processors, real world constraints
should be considered. An important consideration for making integrated circuits
would be the constraints on the size and accuracy of the weights. In a chip these
weights could be implemented as resistors. Further investigations should try hard
limiting the weights to different ranges. Also, the dynamic ranges requirements
could be explored by adding varying degrees of noise to the weight values. This
would provide insight into how accurate the weight values would have to be.

The NeuralGraphic software package allows rapid study of segmentation and
vector quantization paradigms. As many government organizations are purchasing
commercial software to perform these types of task, making this package a'ailable
could save the Air Force thousands of dollars. To make this package of commercial
quality would only require porting the souzce code to several types of machines.
Although NeuralGraphics was written for a Silicon Graphic [RIS, with only small
changes it could be made to run on a Sun workstation, a Micro Vax III or even a

mainframe Vax (wiihout thz graphics).

Appendix A. Ruck Data Analysis

The Ruck data set is a collection of 52 exemplar vectors and 27 test vectors
extracted from laser radar range imagery. The input vector features are base on
Zerneki moments which offer position, shift, and scale invariant to the exemplar
pattern.

The network configuration consists of 22 inputs and four outputs. The four
output indicate classes related to tanks, jeeps,trucks and POL tanker vehicles. The
number of hidden units is indicated by the column Netsize in each of the ‘ables. The
first algorithm used to evaluate the data set is a multilayer feedforward backpropa-
gation network, without theta training and momentum equal 0.7. An n of 0.3 was
used. Several values between 0.3 and 0.1 were tested each without any significant
difference in training times or accuracy. The only difference noted was that using
smaller values of 7 caused the training to converge in a smoother fashion.

The training statistics are based on 1000 random samples pulled from the
training set. The test statistic are calculated by sequential classification of a separate
test set and calculating error statistics.

A classification of right means that for every in-class vectors a value of 0.8 and
above was found at the output together with a value of 0.2 and below for each out
of class node. A guess is an indication of an ambiguous output, but still above 0.5

for the in-class node and below for the out of class node.

A.1 Backpropagation Rules

For a base line estimation of the number of nodes required, several net config-

urations were to 50,000 training cycles with the results shown in table 4.

Considering that the Ruck classification problem can be solved with a 3-5

system (three in the first hidden layer and five in the second), improvement would

81

Netsize Training Test Iterations | Converging
Lower | Upper Right | Guess | Right | Guess

3 3 59.1 74.7| 89.5 86.1 50,000 No

5 5 59.1 47| 952 978 50,000 Yes

10 5 666 750 349 974 50,000 Yes

10 10 68.2 | 74.7, 100.0 | 100.0 50,000 Yes

15 15 69.2 | T74.2{ 100.0 | 100.0 50,000 Yes

26 20 T44 | 76.21 100.0 | 100.0 50,000 Yes

Table 4. Percent Accuracy vs Net Size
Note: reasonable good results were obtained for the 3-5. Nets larger than 10-10 did

not improve accuracy.
be difficult. Convergence with such a small system indicates that the data is well
behaved with only a handful of disjoint regions and no ambigous regions. If tais is
the case, improvement can’t be expected for either a hybrid network or a counter
propagation network.

A.2 Counter Propagation

Counter propagation allows convergence in only a few thousand training cycles,
but the generalization properties are poor. Convergence here means 100 percent
accuracy on the training data. Although the training set classifies at 100 percent,
the test set shows only 50 percent correct classification. The baseline for the test
daia is 74 percent.

Probably the poor performance cannot be attributed directly to the counter
propagation paradigm. The Hecht-Neilsen model for CFN does not use the Kohonen

nodes effectively because a conscience mechanism is not included.

A.3 Hybrid Propagation

Table 6 shows the same tests using a hybrid network.

Kohonen Nodes | Training | Test Cycles
Right | Right | Guess

20 56.3 9.4 13.8 | 15,000

30 56.8) 11.2 18.1 { 15,000

60 100.0 | 29.9| 50.0 | 15,000

Table 5. Counter Propagation:Kohonen Node vs accuracy

Note: Counter propagation demonstrates very poor generalization with good con-

vergence.

Net Size Training Test | Cycles
Kohonen | First | Second Right | Guess
10 g 0 66.2| 80.2| 74.7 | 25,000
15 10 0 70.3 85.1 | 70.4 | 25,000
20 10 0 73.3 88.4 | 70.4 | 25,000
30 15 0 943 98.2] 74.7| 25,000
60 30 0 100.0 | 100.0 | 74.0 | 25,000

A4 Summary

— t:—-vv-l

training time.

Table 6. Hytrid Net: Kohonen Nodes vs Accuracy

Note: The Hybrid net compared to the BPN seems to trade training time for number
of nodes while retaining same accuracy.

As expected, the simple backpropagation rule outperformed all both counter
propagation aud nybrid propagation. While the CPN did converge, the poor perfor-
mance on the test set demonstrated an inability of the network ‘o generalize. The
Hybird net classified data equally as well as the BPN, yet more nodes were required
{0 obtain the same perfocrmance. The advantage of the Hybrid net was a reduced

main(general.c)

/l‘t.“.‘."‘.““tl‘.l.‘.‘.“.‘OO‘...‘.“““‘...‘.I.‘."..‘.“O“.“’.O‘

DATE: 3 Oct 1988
VERSION: 1.0

»

.

.

]

* NAME: General Newral Net—Mamn Loop

¢ MODULE NUMBER: 1.1

’ DESCRIPTION: General Purpose Newral Nctwork with Node Pruning
. ALGORITHM: Verbos BackPropegstio 10
* FILES READ: Weights . data files

¢ FILES WRITTEN: Log file. Weights Stored
d HARDWARE INPUT: None

¢ HARDWARE OUTPUT: Nonme

i MODULES CALLED: None

d CALLING MODULES: Main Frogram Shell
]

L

*

E

AUTHOR: Gregory L. Tarr
HISTORY:

.‘.‘..‘l‘..“‘".‘t“.“.‘.‘.“‘l‘."“.‘."“‘...“"“““..’...‘."‘.'/

#iuclude "net.2"

struct neural_net net:

#define wait(A) iff (count®(A))==0)

exteru int meuu():

int stopit=1000000: an
int connt=0.right.good .guess.test display = 100 show_weighta=100;

extern int decisions.fast;
extern int exam_test.examplars:

main() mmn

{

/* For inihalization only */
4n
hide one = 10;
hide_two = 10:
INITIALIZE():
DISPLAY_NET():
while (count < stopit) {

/* Reading the monse allows magmnification and node prenmg */

chieck_nmiouse():

21:52 Nor 30 1988 Page 1 of yeneral.c

main(general.c)

MAKE_INPUT(net.inp.net.doft.~1):

FEED_FORWARD():

CHEC'K_ERRORS(net.outp.net.doft):

TRAIN_NET():

wait(display){ SITOW{();
{exain_test!=0)DO_TESTY():

1 calculate error();

make_graph(600..470.);
DISPLAY_NET():

}
ififast == | }{DISPLAY_NET():}
count 4
display_count{);

}

/* Save weights on termination */

write_std_weightsy);

} an

oy ‘——"vv[

] 21:53 Nov 30 1988 Dage 2 of general.e

3

s . . N
A abm bt o thrm e ae A e e e e 4 Lo A mn e ee ae et e e

(definitions.h)
/““.“.‘..“’.‘..‘.“‘.‘.“‘."..‘."“‘...'...".“.".......“.“...“
»
. DATE: 11 Awg 1988
i "VERSION:2.1
*
. NAME: Dcfincitons.h
i MODULE NUMBER: 1.2
i DESCRIPTION: Standerd Definitons and Macros
. ALGORITHM: None 10
. PASSED VARIABLES: None
* RETURNS: None
. GLOBAL VARIABLES U'SED: Nome
. GLOBAL VARIABLES CAANGED: None
’ FILES READ: None
. FILES WRITTEN: Nowe
. HARDWARE INPUT: Nome
. HARDWARE OUTPUT: Noue
. MODULES CALLED: Nowe
. CALLING MODULES: Nonwe 20
4
’ AUTHOR: Gregory L. Terr
d HISTORY:
[
2RO NESSOE . (12127277 20008 (X211} ‘/
#define GRAPRICS TRUE
#define TABLE 84
#deflne Bytes_color 256 ™
#define loopi(ON) for{i=0:i<ON;i++)
#deflue loopj(ON) for{j=0;j<ON;j++)
#define loopk(ON) for(k=0:k<ON:k++)
#define loopij{ ONE. TWO) for(i=0:i<ONE:i++)for(j=0;j<TWO;j++)
#define HARDON RED 10
#define INDETERM (TABLE/2)
#dcfine HARD_OFF BLUE
#if FALSE
#tdefine TRUE 1
#define FALSE 0 s0
#define ontput 4
21:54 Nov 30 1988 Page 1 of dcfimtions.h

T T T i T W

———p -

fedefine input 22

#define hide one 20

#doefine hide_two 26

#eudif

#define line printf(*\n")

#define disply 100

#define datafile . .\data\ruck.data"”
#define spcing 200

#dofine weight s 20

#define video 1.00

21:54 Nov 30 1988

(definitions.h)

LU

Page 2 of definitiona.h

AN N B

2ol v 4 —— rm—— e o

e L L S AP St G e St oSS

N

/000'0“"“‘0.1.00‘0"OCOOO0.0‘.OOQG"0.0"“..‘.“‘..‘..“‘.....“’.‘.i‘

L.

DATE: 3 October 1939
VERSIO: 1.0

NAME: Neth
MODULE NUMBER: 1.3
DESCRIPTION: Structure Definstion for the Ncural Net

AUTHOR: Gregory L. Tarr
HISTORY:

4 & & & % & % & % 88

..‘.“‘0‘..‘..-...‘l‘.‘..".‘....“l'...“‘.O...‘“‘.‘...“.‘....“‘0.0‘./

#define size 100

/* Criticel Defimtion . memory allocated el compile time *f

struct neural_net { 20
float outpisize):
fluat dolt[sise]:

float w2(sizej[size}:
Boat w2_nom|sise][size):

-—
—

float aw?2sise][size}:
float t2[nize]:

float outp_mask|size}:
float y2(size]:

float y2_mask(size}:
float y2_di[size]:

Boat w i (size][size]:
float w1 mom|size][size]): -

float awi [size][size]:

float ti[size):

float y1{size]:

float y1_mask(size]: 50

toat y1_di[size):

21:54 Nor 30 1938 Page 1 of nct.h

- gy g~ po g - e e © e -e .. .
Mm_“—&-ﬂ--t—_“.—»‘»a. B e T L 2% T R R R i T T D S

(net.h)

flont vOfsize]lsize}:

float wO_mom(sizel[size]; .
flont awOfsise][sizel:
float tOfsize]:
fBoat iup|size]:
float iup_mask(size}:
int clase_test|size]:
int class_count(size):
&)

it output.hide_one hide_two.input:

21:34 Nov 30 1988 Page 2 ~f net.h

L]
i 4
i
;j
1, ———

L

.

Ll

|

e e van e ha e e e e o e

INITIALIZE(initialize.c)

/0““ ety SRBSCRNBESSOPSRERRSBENSSO0EBS0NES2EPSSPSGPRESS

DATE: 3 Augsst 1938
VERSION: 1

NAME: Imtialization Module
MOUULE NUMBER: 1.4
DESCRIPTION: Imtelization of the display hardware,
any inpul lcst date. end nel dafa strucfure. to

ALGORITRM: None

PASSED VARIABLES: Nome
RETURNS: None

GLOBAL VARIABLES U'SED: Net
GLOBAL VARIABLES CHANGED: Nowe
FILES READ: Nome

FILES WRITTEN: Nonme
HARDWARE INPUT: Nome
HARDWARE OUTPUT: None
MODULES CALLED: None
CALLING MODULES: Nowe

2

AUTROR: Gregory L. Tarr
HISTORY:

L2 2N JEE NN B TR BN 2N BN 2NN TN NN NN TN JNE NN N R R 2 R 2R J

."0O.‘.O‘.“..‘O..‘.‘..‘..‘..0..‘.‘.......‘.‘.“.“OO...‘...‘.‘.".‘.‘.O’

#include “dﬂgittm.l'
#ivclndengl . b
#incinde"device 2"
#inclnde <time.h>
#incinde <stdio.h>
#iuclude <signal.h>
#include "aet.A"

extern int count;

oaxtern struet neursl_net aet;

float randony):

extern int wmenu(): s

INITIALIZE() INITIALIZE

21:55 Noe 30 1988 Page 1 of imitialize.c

L

u

I

init_net()

{

INITIALIZE-init net(initialize.c)

signal(SIGINT menu);
init_scresn():
menu()

nit_net():

init_net

nt ij:
new_net(): ™
count = 0;
loopij(size size) net.w2[i][j) = random():
loopi(size) net.t2(i] = random();
loopij(size sise)

net.wifi)fj] = random(): el
loopi(siseinet.1i{i] = random():
lonpij(sise size)

net.wO{i]j] = random():
loopi(sise)net.10fi] = raudon():
loopi(sise) net.y2 mask(i] = TRUE: p0
loopi(size) net.yl_mask[i] = TRV'E:
loopi(sise) net.inp_.mmk(i}] = TRUE:

loopi(size) net.outp_mask{ij = TRU'E;

]* Generste a random namber betwren ~0.5 end + 0.5 */
float random ()
{ Boat x:

int y:

21:35 Nor 30 1988 Page 2 of initialize.c

R IR N DA

Lh .o

Lo

: |~ .

Apvendix B. Roggemann Data Analysis

The Roggeman data set consists of two problems. The first is a simple target /non-
target classification based on statistical relations of an input scene.

The second problem takes a target identified from the first part and using an
expanded vector quantization of the scene make a specific classification of vehicle

type.

B.1 Target/Non-Target Classification

The input data is a vector quantization of three statistical features of the image
data. The first value of the input vector is related to the ratio of the height to width
of a blob segmented from an infrared image. The second feature is a ratio of the
energy in the bloo to the energy in the background. The third number represents the
standard deviation of the dlob pixel values.

The network configuration consists of three inputs and two outputs. The two
outputs indicate target (1,0) or a non-target (0,1) with one going high while the other
goes low. The number of hidden units is indicated by the column Netsize in table 7
for two hidden layers. The first algorithm tested uses a multilayer feedforward back
propagation network, without theta training and without a momentum term. An 9
of 0.3 was used. Several values between 0.3 and 0.1 were tested each without any
significant difference in training times or accuracy. The only difference noted was

that using smaller values of n caused the training to converge in a smoother fashion.

The training set consizted of 600 samples. The training statistics are based on
1000 random samples pulled from the training set. The test statistic are caiculated
by sequential classification of a separate test set and calculating error statistics.

A classification of right means that for every in-class vectors a value of 0.8 and

above was found at the output together with a value of (.2 and below for each out

84

e T WET i

_hl

i Ll

R

)

Netsize Training “Test Converging
Lower | Upper Right | Guess | Right | Guess

10 10 3T S21| 21| 603 No

20 20 30.1] 610 210 81.0 No

20 10 40.0| T2.0| 48.0| 520 No

30 10 46.7 76.3 | 54.0 73.0 Ne

30 30 534 | 63.10| 63.0| 810 No

40 10 48.5 75.2| 430 T5.0 Maybe

40 40 654 | T1.7| 64.0| 740 Maybe

50 10 499 728| 560 T72.0 Maybe

50 50 70.1 706| 750 76.0 Maybe
100 10 8521 652| 550} 602 No
100 20 66.4 81.3) S51.0] 68.2 No
160 30 689! TT.7| 620 672 No
50 20 58.7 822) 50| T72.0 Yes

Table 7. MFB: Percent Accuracy vs Net Size
Note: The 20-50 aet seems to be the most efficient and zccurate.

of class node. A guess is an indication of an ambiguous output, but still above 0.5
for in class node and below for out of class node.
Training was extended for network configurations that appeared to have the

best chaace of converging. Training was stopped when accuracy rates appeared
stable or no longer converging.

B.2 Backward Propagation Rules

For a base line estimation of the number of nodes required, several net config-
urations were to 50,000 training cycles with the results shown in table 7.

Since the problem consisted of over 800 exemplars, as expected, a larger net is
required. The large size of the data set indicates a greatér probability several disjoint
regions. The fact that the data never did better than a about 80 percent indicated
ambiguous decision regions. As expected, training time also increases and to bring
the network up to the maximum performance requires over 500,000 iterations.

85

Netsize Training Test Training Cycles
Lower | Upper Right | Guess | Right | Guess

S0 10 $9.2| 78.7| S7.0| 70.0 100,000

40 20 790| 80.7| 53.0| $8.0 100,000

50 20 67.7| 78.7] S3.0| T2.0 500,000

Table 8. MFB: Extended Training of Converging Topologies

Note: There is no significant improvement between 50,000 and 500,000 training
cycles.

Using the weights save from the 20-50 network, neural network pruning tech-
niques were employed see if any improvement could be made in the efficiency or

accuracy.
Netoze Traming Test Taining Cycles
Lower | Upper Right Guess | Right | Guess
0| 2] 612 87| 570| 700 300,000
a7 12| eso| 77| 0| TM0 500,000
al| 12| 87| ss7| es0| 760 500,000
al n 40| 827| 60| 760 500,000
al n uo| s27| 7160| 760 500,000
33 7] s90| e20]| 10| s20 500,000

Table 9. Pruning to Find the Optimum Size Network
Note: Pruning the network found a better solution with an 11-41 configuration.

B.S Counter Propagation

Because of the long training times and large net size require for convergence the
Counter Propagation net was used to try and get a measure how many complex the
decision regions are present. counterpropagation fail to classify with any reasonable
numbers of nodes. ’

The experiment was haited after training 30 samples on to 20 kohonen nodes.
The intent of the experiment is to find a less complex system than the multilayer

S&mplu Kobonen Nodes | Training | Test

Right [Right | Guess
12 16%.0—‘77.0 482
12 1000} 27.0 48.2
12 89.2) 170 55.6
16 1000 30.7 71.0
20 1000] 29.9 50.0

€38R =

Table 10. Counter Propagation: Kohonen Node vs Samples

Note: When any more than 30 exemplars were used, 100 percent accuracy couldn’t
be reached.

perceptron alone. With the 20.-40-20 net, the number of interconnection for only 30
samples is greater than the back propagation model.

B.4 Hybrid Propagetion

As expected the Hybrid net trained faster than the back propagation network.
the net size was greater than expected.

which is most probable due to inefficiencies in the Kohonen layer. By reducing
the Kohonen layer to partition fewer decision regions, the back propagation layer
can be reduced as well.

Samples | Net Size Training | Test
Kohonen | First | Second Rijh_t | Right | Guess
100 12 20 12 93.0| 61.0 720
200 16 24 12 810| 53.0| 66.0
300 20 20 12 92.0 56.0 72.0
652 60 60 24 91.0| 63.0 74.0

Table 11. Hybrid Propagation: Kohonen Nodes vs Samples

87

v

e et gt i e et

e

B.5 Target ldentification Data

The target. identification data is a subset of the previous data. Those blobs
identified as target were subjection to addition analysis. Eighteen statistical mo-
ments were calculated for each target. The targets could be either tanks, *rucks
or jeeps. Using an - ~roach similar to that used ior the tacget/non-target data.
Differing aet sized gave the results shown in Table 12

etsize Training Test Counverging
Lower | Upper Right | Guess | Right | Guess

5 5 56.3| 81.4| 60.0| 70.0 No

10 10 58.3 79.2 | 55.0 83.3 No

15 15 63.3 81.4| 58.2 61.1 No

40 20 63.2 784 52.5 71.2 No

Table 12. Back Propagation: Accuracy vs Net Size

Using the Hybrid Propagation Network Table 13 shows the results.

Netsize “Training Test Cycles
Kohonen | Lower | Upper Right | Guess | Right | Guess

10 10 10 3.7| 521 21| 60.3] 25,000
20 20 10 451 765| 21.6| 46.7| 25,000
30 20 20 65.2| 1000 55.2| 74.1] 25,000

Table 13. Hybrid Propagation: Accuracy vs Net Size

-

At

»

- —

Appendix C. Computer Source Code

This section include the computer software for several programs.

89

init_net(initialize.c)

y=ra K) % 10
=((float)y/100.0-0.5): 1o
return x;

}

T Gt s~ —tnrs St .

~

21:55 Nov 30 1988 Page 2 of instialize.c

DATE: 3 Oct 1988
VERSION: 1

NAME: Makeinpat.c
MODULE NUMBER: 1.4

ALGORIThM: None

PASSED VARIABLES: Nowe
RETURNS: None

GLOBAL VARIABLES U'SED: None
GLOBAL VARIABLES CHANGED: Nowe
FILES READ: input date

FILES WRITTEN: None
HARDWARE INPUT: Nowe
HARDWIARE OUTPUT: None
MODULES CALLED: main()
CALLING MODULES: Nowce

AUTHOR: Gregory L. Tarr
HISTORY:

L I IR R IR R K JEY SEY YN SEE S SR I IR TR B B R

DE: CRIPTION: Provide fer file input f a data set.

2900000080020 80090800083888800000808808408008004888

#inclnde "definitions.h”

#include "net.2"
#inclade <stdio.h>
#inclnde <math.h>

int examplars ;
int vector:

it exau test;
iut classes;

#dofine TRUF |
#define FALSE 0

#difine maxexamplars 800
#defiue maxexam_test 200
#hdefine maxvector 40

float datafmaxexamplars+maxexam_test][maxvector):
flont datx_test{niaxexam_test)[imaxvector]:

int clams{tinxexamplars):
int class_test{maxexam_ter';

float add_noise=0.0:
float data_stats{inaxexamplars)[maxvector):

extern flont random():

24:53 Nor 10 1988

(makeinput.c)

288 SEBINPECLERRIESEESSNEVREBPEVISVSRESVIVIRISS PSSR ERYENES

10

Page 1 of makenput.c

| e e e —
A
.

init data(makeinput.c)

char filename{30}:
static cuer sinwave[?] = {’e’,'1' 2’ '8’ 20’ ¥’ "W},

it dosin = TRUE:

1 FILE *fst; ' &0
init_data() init_dat.
{
int ij.x;
] . float v.a:

FILE *fp.*c:

char tacget|t): 0
printf("\nData Filename:\n "):
scanf{*%s" filename):

loopi(7){if (sinwavefi] != filenamc(i]) {dosin = FALSE:bresk:)}

ifldosin == TRUE) {init_sin();
return:}

fat=fopen("data_stats” “v");
fp=lopen(filenaie, "x");

iflip==NULL){ printf("\neses File not Found sesss\n"):exit(0):}
printf{*\aData Iastalled\n");

facanf{fp."%Xd %Xd %d Xd".Lexamplars,&exain_test &:vector, & classes);

output = clanses; o0
input = vector:
printf{"%d %4 %4 %d\n".esxamplars.exam_test.input.output);
for (i=0:i<examplars+exain _test:i++){

facanf{lp."%d ".&x):

for (j=0:j<vectorj++){ 100

fscan{{fp."%g *.&datafi](j]):
)
facanf(fp."Xs" \arget);
21:55 Noe 30 1988 Page 2 of makeinput.c

b

¢]

if (target[0) ==
if (tacget(l] ==
if (target[0] ==

if (target[0] ==
if (target[0] ==
if (target[0] ==
i (target{0] ==
- § (lll’;ﬂ[()] ==
if (targes(0] ==
i}f(tuget{O] ==

felose(fp):
for (i=0:i<exam test:i++){

for (j=0;j<vectorj++){

init data~-MAKE INPUT(makeinput.c)

1T?) clamefi}=0;
'4%) classfij=1;
') cln-{i]:!:

10?) clamei]=0:
1) clansfi}=0:
'2°) clamsfi]=1:
'3%) claeai]=2;
‘e) elaifi]=3;
'8’) clama{ij=4:
’8’) classfi]=5:

data_test[ijij= dstafi+exanplace]lj):)

clase_testfi]=clasefi+examplars);}

/ Pcalculate_crror();
*/
)
int sample.ctype:
MAKE_INPUT(x.doft.randx)
float x[):
float doft():
i.ut randx;
{ imt i;
ifldosin == TRUE) {MAKE _SIN(x.doft):return:)
fitrandx < 0){

ctype = rand() % oulput ;

sample = rand() % examplars:)
else {sample = randx:

ctype = class{sanipic):)

while{ clams{samplic) 'z ctype)
sample= rand() K examplars:

2{:35 Nov 30 1988

MAKE.INPUT

140

1%

Page 3 of makemput.c

Ty

e i B T L RN R

[o ot X B it o 5k T A BT, S LT T o P 2l T L T I VR I IO FRTTOS e i ae - -kt Shetinm
: = em el iae ae e it e e ————

MAKE_INPUT-data stats_function(makeinput.c)
/* printf("%d %d \w".cless[semple].ctype) : ¢/ 180
for{i=0:i<vector:i++)x{i]= datafsamplejfi];
for(i=0:i<vector:i++) x[i] += x[i] * random()* sdd_noise:
for(i=0::<ontput:i++)
ificlass{sample)==i) doftfil=TRUE;

} else doft(ij=FALSE; 170
MAKE_TEST(x.dof.which) MAKE.TEST
float x{J.doft{);
int which:

{ imt i
180

sample = which:

ctype = clnes_test[samiple]:

for{i=0ti< vector:i++)x[ij=data _test(which](i};
for(i=0:i<output:i++)

if{ class_test{which]==i) doft{ij=TRUE:

else dofi(i]=FALSE: l‘-'°
}
fhdefine allexam (examplars-+exam test)
float mean|sisc)[maxexamplars+maxexan_test),

stddev{size][maxexamplars+-miaxexam_test]:

data_stats_function() data_stats_fuaction
{ int nn.ij.klsmall.right. wrong,totright; ™

int class_sccumsisize):

float dist{maxexamplars].temp:

FILE *fnig;

textport{0,1000.0.700);

fuig = fopen(“NearNeigh"."v"): e
2/:35 Nov 20 1988 Page { of makeinpul.c

RO EURNES (R

A e

e, e g et e et

data stats_function(makeinput.c)

systeny "cleax”):
printf(*File: %s \n" Jilensme);
fpeintf{ fmig,*File: Xs \n” flename);
printf("Number of EBach Class: \m\n"):
/* Celcslate Mean of eack vector */
loopi{output) class_accums{i]=0:
loopi(allexam) class_accunms{ciase{if]+-+:
loopi{output){ printf("Class %d: %4 ".i.class_accunmfi]):
fprintf{fuig,"Class %d: %4 “.i.class accunwli]):)

line:fprintfifnig,"\n"):

loopj{input)
{loopk(output)

mean(k](j] = 0.0:

loopi(allexam){

mean{class(i]][jj = mesn{clasfi]]jj-+datafili}:}

loopk(output){
mean(k]jj=mean{kIG}/class scrumak]: }
)
#if FALSE

/* Now calculate standard deriation */
loopjlinput){loopk{output) stddev[k]lj] = 0.0:
loopi{allexan){
printf(*%d %d %d \n®j.k.i):
stddev{class{il)li] +=
mean{class{il][j]~datafi}]*
mean(class{il][j] - dataii}(j]:}

loopk(ontput) {stddevik][il=stddev{k]{j)/clams_sccums(k]:

}

21:55 Nov 30 1988

240

Page 5 of mekeinput.c

B ATUUREUN) R

S TR PO Lo ¥ 5

1)

— - o~

BTE D TEpee S S ’—‘“‘-‘-‘w7w~

data stats_function(makeinput.c)

} line:
Hendif
/* Using the mean for erch class. calculate distance from
cach class */
right = 0:
loopi(allexam){loopk(output) dist(k] = 0.0;
loopj{input)
{ loopk(output)y temp = datafi]fj]=nwsn[k]j):

distk] += temp * temnp :}}
small=0 ;

temp=dist(0]:
[® primtf("Smp:%d ".i): 4/
loopk(output) { /* printf(~%3.39f ~.dist[k]): */
if (temp > dist(k])
{ small = k:

: temp=dist(kj:}

if (class{sninll) == clamsfi]) right+4;

/® printf(~ Class ¥d Nearest Class:%d “.cless[i].amall):line:
‘/

} prio\f{"Bstimate using class means\a"):
fprintf{fuig,"Estimate wsing means\n");
printf{® %4 right/%4 \a".right.allexam);
fprintf{fnig.” %d right/%d \n”" right.allexam):

for (mn= L:nn<10mn++){
print{{"\n %d nearest Neighbors ".mn):
fprintf{fnig."\n %4 nearest Weighbors ™.mn):
totright = 0:

loopi{examplars)
{loopk(examplars) dist{k] = 0.0:

21:55 Noe 20 1938

3iv

Page 6 of makcinpal.c

AN I RS RONY I PRSI CRATRUN 4 JRERT | SAREIN | N

i P

S o
.]

data stats_ function—normalise data(makeinput.c)

loopj(input)
320
{ loopk(examplars){ temp = datafi}[j]~datalk][:
dis[k] += emp * temp :}
small=0 ;
temp=diat(0)]:
/?* privif(Sample:%d class:Xd ncighbors “.i.classfi]):
ferintf{fnig. Semple:%d class: Kd nerghbors ~.i.classfi]):
./ o
. right = O:w.ong = 0:
for(l= O:l<unil++){
small=0 ;
- temp=diat{0]:
loopk(examplars) {
340
if ((temp > dist[k]) & (i '= k)
{ small = k;
temp=dist[k};
}
}
dist[small)=1000;
/* printf(“¥id ".class{amall]):
[fprintf(fuig. "%3d " classfsmall]):
s 380
if (clam[smiail] == clas{i]) right++:
clse wrong++:
}
iflvight>wrong) totright++:
}
printf("Total right Xd %3.2f" . totright,(float)totright/(float)examplars):
fprintf{fnig,"Total right %d %3.2¢ %"
totright.{float)lotright /(float Jexamplars® 100.);
380
}
felone({fnig):
exit(0);
}
normalize_data() normalize data
{ it i.j=0:
float mag: 3%
loopj{ altexam){
21:55 Nor 30 1938 Page 7 of makeinpsal.c

w

o Y

_ml.

AL

Al

B

Ll

'-‘

normalise data—-init_sin{makeinput.c)

mag = 0.0:
loopi(input) mag += dataf](i] * dacafj](i}:
meg = rt{mag):
loopifinput) datalj]fij= dataljjfi]/mag;
Jorintf{*Data Bormalized\n"):

}
#define PI 3.)415

30
MAKE _SIN(x.doft) MALKRESIN
: float
. float dolt():
{ Boat y.s.addl phase:
loug uow:
iut ij.k.which. which2.which3.which4:
seand(tinwe{&now) % 37)
which = rand() & input:
phase = raudomy) * PI:
loopi(input){ x[i]= cos(({Boat)i*PI1*(Boat)which)/input+ phase):} a0
loopi(output) doftfi] = 0.0:doft{which]=1.0:

phase = random{) * PL;

which2 = rand() % input:

loopi(input) x{i] = x(ij+ cos(((Boat)i*PI*(float)which2)/input+phase):
doftwhich2) = 1.0:

phaze = randomy() * PI;
which3 = rand() % input;

loopitinput) x[i) = x[i] + sin(((Boat)i*PI*(Buat)whichd)/input+plase); «on
e e doft[whichl] = 1.0:
} L
- init_sin() it s
(2
~ prift{{*How mamy Imput and Output Nodes ?%);
ecanf("%4" Loutput);
input = output;
examplars = 0; S
exan _test = 0; 410 j
}
T
-
-
21:35 Nov J0 1988 Page 8 of md'unpal.t;

FEED FORWARD(feedforward.c)

8000802800002 0000 U000 IRRPVNCE0R000S00SPE0ISISRESS82080000080008088008
*

DATE: 29 Scpt 1988
VERSION: 1

/

]

L]

L

[]

i NAME: Feedforward

* MUDULE NUMBER: 1.5 :

d DESCRIPTION: Propegetcs data from the input io the ouipul

* ALGORITHAM: Standerd feedforward rules 10
. PASSED VARIABLES: Nome

. RETURNS: Nonme

. GLOBAL VARIABLES USED: None

. GLOBAL VARIABLES CRANGED: Nowe

¢ FILES READ: Nome

¢ FILES \WRITTEN: Noae

¢ AARDIWARE INPUT: Noae

e HBARDWARE OUTPUT: Nome

. MODULES CALLED: None

. CALLING MODULES: Nome 0
L]
|]
*
L]

AUTHOR: Gregory L. Tarr
HISTORY:

SUCNSEPEEIECRINPITESOCRSRSORPINI0O0P00000000808083808880088 v/

#incinde “detinitions.h”

#inclunde “net.n"

»
#incinde <math.h>
extern struct neural_net net:
float caley():
FEED_FORWARD() FEED FORWARD
{ int ij:
' 4n
loopi(input) if (net.iup_mask(i] == 0.0) net.inp{i]=0.0:
foopi(hide_one)
{net.ylfi]= calcy(net.inp.net. w0 net 40.&i.input):
}
loopi(hide_ one) if (net.yl_mask(i] == 0.0) net.y1{i]=0.0:
loopi(hide_Awo)
{netx2{i]= ealey(net.ylnet. wlnet.tl Kihideone):} - so
loopi(hide_two) if (net.y2 maskli] == 0.0) net.y2[i)=0.0;
21:56 Novr 30 1988 Page 1 of fecdforward.c

T T TN g L ARSI T * B o ey -

R

FEED FORWARD-findnode(feedforward.c)

loopi(output)
{net.outpi]=calcy(net.y2.net. w2.net £2.&i. hide_two):}

loopijthide_one.input)

{ Hinet.y2 mask(j]==1.0) net.aw0fij] = net.w0(i[} * net.inp[j:}
loopij{ hide_two hide_one) |

{ iinet.y) mask[j}==1.0) net.awifi][j] = net.wifi]lj] * net.y1[):)
loopij(output.hide_two)

{ flnet.inp mask(jl==1.0) net.aw2(ij] = nct.w2{i)li} * net.y2(j):}

}
float fixy():

float -aicy(x.w theta.index.lower)

Bon’ x(].w(l{size].thetal):

it *index:

it lower;

{ it i.k.number:
float y:
y = 0.0;
number = *index;
loopiflower){ y = y + x[i] * wluumber}[i}:}
y = y - theta{pumber|:
roturn fixy(y.2.0):)

Boat fixy(y.hardness)

- float y.harduess;

{
return(1.0/(1.0 + (float)exp(—(double)(hardness * y)))):

finidnode{ xs.ys)

int xs.ya:

21:56 Nov 30 1988

80

findnode

Pagt 2 of fredforward.c

findnode(feedforward.c)
{int i lsyer.the_node temp:
Inyer = (ys/spcing): ie
the_node = (int)(xz / weights):
temip = (1024/weight s):
clear_screea():
switch(layer) {
cane 0: the_node == (temp—input})/2; 120
#finet.inp_mask{the_node] == 9.0)
{ net.inp_mask{the_node] = 1.0
loopi(hide oue) pet.tofi] += net.awOfij{the_node];)
vise
{ net.inp_mask(the node] = 0.0: 130
loopi{hide_one) net.tofi] ~= net.awOfij{the_node]: }
break:
case |: the_node —= {temp—hide_ one)/2:
ifinet.y I_mask{the_node] == 0.0)
{uet.y |_mask(the_node] = 1.0: 148
loopi(hide_ two) net.tifi] += pet.awi(i)[the_node]; }
clee
{ net.yl_mask(the_node] = 0.0:
loopi(hide_swo) net.t1fi] —= net.awifi){the_node}:)
break: ' 150
case 2: the_node —= (temp=hide_two)/2:
inet y2_mask{the_node] == 0.0)
{ wt.y2_mask[the_node] = 1.0:
cise }
21:56 Now 30 1983 Page 3 of fecdforwand.c

P T

findnode(feedforward.c)
{ net.y2 mask{the node] = 0.0: 180
}
break:
)

21:56 Nor 10 1988 Page { of feedforwand.c

] TRAIN_NET(traiunet.c)

SRSV RES IR L SLESRECPSEBER SRR SR EIVIRIEISEEPREISI SRR SR OSERT RSN ISSRESD

DATE: 23 July 1988
VERSION: 1

NAME: Treinnet

MODULE NUMBER: 1.6

DESCRIPTION: Using oulpul. adjusts wights reduce crror.

ALGORITHM: Werbos Multilayer Perceptron Backpropagation. 10
PASSED VARIABLES: None

/
E]
L]
L 4
”
.
*
L]
L
L]
¢ RETURNS: None
-
L]
L
.
L]
L 4
.
L]
L]
2
L
E]

GLOBAL VARIABLES USED: Weight Vectors

GLOBAL VARIABLES CHANGED: Weight Vectors

FILES READ: None

FILES WRITTEYN: None

HARDWARE INPUT: None

HARDWARE OUTPUT: None

MODULES CALLED: None

CALLING MODULES: Mamn Loop)

AUTHOR: Gregory L. Tarr
HISTORY:

..‘.l.“"OOOQ.O.l“lOO“.‘..O......‘.“C.'.l“"O.“.l“.‘..“““..l"‘/

#dcrine THETA TRUE

#iuclude “definitions.h” 30
#incilnde "net.h"

extern struct neural_net net:

#dofins neta 0.3

float delx():

tloat deiy(): . 4

#doefine momeniu.. J.7
TRAINNET() TRAINNET

{int ijdn:
Hont del3[size]. dei2fsize] del1[size]:

/* owtpat */
loopj(output) { deld{j] = dely(net.outpfj].net.doft(j}): 30

loopi(hide_two){
net.w2 mom(jjli] = (neta * deldfj] * net.y2(ij+

21:57 Nor 20 1938 Page 1 of trainnet.c

b

~

a v—— ——— s o - -
~ g - - *v.,..~._._"_l_

findnode(feedforward.c)

a0

{ nct.y2_mask(the node] = 0.0:
}

break:
}

21:56 Nov 30 1988 Page | of Jeedforwand.c

'«

S

o

T T G SN, R RN G Y g

e s iy
ks R

womentum * net.w2_momjjfi})
* net.y2_mask{i]:
net.w2(i}i} += net.w2_momljji}:

1

/* Second Hidden */
loopj(hide_two)
{ del2fjl= deix(net.y2{j].deld.net. w2 j.output);
{7 wettdfif += neta * del2fj] :*/
foopi(hide_one) {
net.wi_mom{jji] = (nets * dei2{j] * vet.y1{i]
+ momentum * net.w)_mom{jJfij)
* net.yl_mask]i);
net.wifi}{i}] += net.wi_mom{jjil:
n
/* First Hidden */
loopjthide_oue) { defl[j]=delx(net.y1[i).del2.net. wi j hide_two);
{* wet t0fi] += wete * delsfj] : */
loopi{input) H

net wO_momfj}fi} =

TRAIN NET(trainnpet.c)

{ weta * deltfi] * netinp{i] + momentum * net.w0_momnfjJfi))

* net.inp_mask[ij:
net.wOfjjfi] += net.wO_momi{jjfij:

})
)
foat dely(y.doit)
float y:
float doft:
{ float del=0.0:;
del = ¥*(1.0~y)*(doR~y):
retura del:

)

21:57 Nov 30 1988

e

Page 2 of trammci.c

TRAIN NET(trainnet.c)

float deix(x.del.w.n.upper)
float x.del[).w[[size}: 110
int n.upper:
{ Boat delta.sum:

1 int ij:

sum = 0.0:
loopi(nppet) sum = sum + delfi] * w(ijn]; 120
sum = x*(1.0-x) * suns

return sum:

{ 21:57 Noe 30 1989 Page 7 of trasanel.c

SHOW(show.c)
, see0y S0SS0008888208005000000838008038880300888080808
L J
M DATE: 3 October 1988
i V'ERSION: 2.0
.
. NAME: Show.c
. MODULE NUMBER: 1.7
¢ DESCRIPTION: Ustd to display intcrnal relucs in the teriport
. ALGORITHM: None 10
* PASSED VARIABLES: Nonme
. RETURNS: Nowme
d GLOBAL - VARIABLES USED: Nowe
i GLOBAL VARIABLES CHANGED: Nowe
* FILES READ: None
i FILES WRITTEN: None
. HRARDWARE INPUT: None
. AARDWARE OUTPUT: None
* MODULES CALLED: Nowe
* CALLING MODULES: Nowe n
*
* AUTHOR: Gregory L. Tarr
i HISTORY:
o

svsssvens sne PP Y
#include "net.2"
#iuclude <stdio.h>
3

#inclnde “definitions. k"
#dofine TRUE |
#define FALSE 0
extern int display.do_sin:
extern struct neurai_net net;
extern float accuracy:
exiern int count right.guess.good. test . decisions;
iut 10 = 0; 4
int It = 0:
it Hw = 0:
int 12 =0
int 13 = 0;
it 4 =1
SHOWY() SHOW

{ iff10) showinpnut(net.inp) :
iftl)) shownode{net .y hide_one):

il w) showweighta{uet.wO.net 10,1 hide one.input):

ifl12) shownode{net.y2.hide_two):
ifii4) showoutput(net.outp.net.dofi);

21:58 Nov JO 1938

50

Page | of show.c

—aty ——

foopi(output) printf("Class %4 %2.2¢ \a".i,
(Boat)uet.class test{i}/
{Boat)net.class_covut[i}*100.0);

tine;

accuracy = (float)decisions/(foat)display/(float)output * 100.:

printf{*Decisions: %3.2f \a“.(Hoat)decinions/

e (aaiae aaaaan S - ——
L e T _-:-.-:.; A AN v
SHOW-shownode(show.c)
showinput(x) showiuput
float x{J:
{ imt i
an
print{{*#ultilayer Perceptron Nodel\n");
loopi(input) printf{* X(%d) ~.i)line;
loopi(input) printf{%1.2¢ *xi)):hneline:
showoutput(y.doft) showoutput
flont ¥]): 70
float dofif]:
{ it ij:
float error;
printf{*Out :*);
loopi{output) printf(*%2.2¢ *.y(i]):line: &
printf{ *DefT: ")
loopi{ontput) primt{(*%X2.2¢ * dofi{i]): line;
printf{"Count:¥d \aRight:%X2.2¢ Guess:%2.2f\a" .count,
(Boat)cight /(Boat Mdisplay*100.0,
. (float igood/(float Mdisplay*100.0);
ifido_sin != TRUFE)
so

(Boat display /(Hoat)output * 100.0):

clear_test{):
}

shownode{ y.n)

21:58 Nov 30 1988

showuode

Page 2 of show.c

-

..;'. r'..‘._...:'

Ay

shownode-showweights(show.c)

float y{}:

int n;)
o d
{ it ig: 110
float max.min:

line:

L

printf ("Node Values:"):line:

loopi{n) printf{*%2.42 ".y[i}):line;

} 120

L

show:weights(w theta.layer upper Jower) showweights

flont w{][size].thetal):

int layer,uppet jower:

(1.

{ imt ji
float mmax.min;

line;

Ak

loopi(upper) printf{~Vi(%d,%d) “.layer.i)line:

loopi(lower) {

loopj(upper) { i (w{j]fi]) < 0.0) —
printf{~%1.3¢ *.wGIG): -

else 140 g

printf{* %1.3¢ *.w[j]fi]):} ,

line:) .

printf{ “\nThetas: ");

loopi(upper){ printfl * %3.6¢ ".thetafi]):}

line:
} 150

21:58 Nov 30 1988 ' Page 3 of show.c

P

e

—gp— e P

-

o m— A

o ———

SR80S0 082200882008808

DATE: 3 October 1983
VERSION: 2.0

NAME: Mens.c
MODULE NUMBER: 1.8

ALGORITRM: Nowe
PASSED VARIABLES: Nowme
RETURNS: None

FILES READ: Noae

FILES WRITTEN: Nowe
HARDIWARE INPUT: Nowe
HARDWARE OUTPUT: Nowe
MODULES CALLED: None
CALLING MODULES: Nonme

AUTHOR: Gregory L. Tarr
HISTORY:

.
.
.
»
.
L
e
.
[
.
L
.
L4
*
*
*
L 4
L
L g
L
]
.

DESCRIPTION: Provides intersclive mens janclions

GLOBAL VYARIABLES USED: Nome
GLOBAL VARIABLES CHANGED: Nowe

extern int dis_class.sample exam _teet;
extorn float add_noise;

extorn int activ.show_weights.display:
cxtern float threshold.add_noise:

#inclnde <signalh>
#include <stdio.h>
#inelnde “defivitions.h"
#inclnde “net.2"
extern int mistakes.stopit;
extern struct neural_net net:
extorn fut count.right.good guess.test:
#dofine TRUE)
#define FALSE 0
iut menu()
{ char select filename{20):
int nodenumber selector=TRUE;

systeny“clear”):

printf (* Nemu \a"):

peintf (" 1) Initialise System”).line;

printf (* 2) Save Veights™):line:
printl (" 3) Read Veights "):line:

printf (" 4) Toggle Act/Weights™).line;

printf (* 8) Add Noise™):line:

printf (" @) Display Iatervals”):line:

21:58 Now 30 1988

{menu.c)

40

Page 1 of mena.c

PSR LY TS E 8 X R\

N P

x

printf (* 7) Toggle Krrors "):line:
printf (* 8) Eew Net Topology”)line;
printf (* 9) Data Statistics®);line;
printf (* a) Set Stop"):line:
printf (* o) BIIT \a"):
printf (® SELECTION: ? *);
select = getchar():
switeli(select)
case ‘e’:
gexit():
systemy("gcleaz™):
exit(0);
break:
case 1’ init_data():
:break;
crse ’2’: write_weights ():
case

break:

Al

new_net(menu.c) ..

Cal

g

'3': printf{"\nknter Filename: \a ? ");

scanl("%s" fHilename);

read_weights {Rlenamwe); C
printf{"\a %s Iastalled\a\n" filename); j

break:

case ’4’: activ = TRUE:
break;

case '§’: prinif{"Jow much soise: ?™);

scanf{"%2" L add_noise);

break:

case ’6’: printf{"\nCount between Screen Update ?\n"): t
scanf{"%4" & show_weights); -3

printf{*\nCount betweea tests ?\n");
scanf{"¥%4" & display):

bhreak:

case 'T: mistakes = TRUE:

break:

case ’8’: system(“clear"):
init_net();
break:

case '9’: init_data():

data_stats_function():

brenk:

signal(SIGINT . menu);}
new_net(}{ '

1on

new net

prinif("Sew Network Topology\a"): -—
printf("Sunder in First Layer\n”): —'
scaufl{"%d"” &L hide_one): :
print{{"Bunber in Second Layer\a"):

21:58 Nae 70 1988

Page 2 of mena.c

new_net-write_waights(menu.c)

scanf{"%4" & hide_two);
}:
read_weights (filename)
char filename(]:
{ FILE *mp:
float x:
nt ij.k:
fp = fopen (filename "z"):
if (fp==NULL)
{peintfl™\n seeFile Erroress \n").return:}
facauf {fp."%4 %d %d Xd™ . Loutput.&Lhide two.&hide oue Linput):

loopij{output hide two){
facanfi{p, %" &x):
net. w2{ij(jj=x:}

loopij(hide_two.hide_one){
facanflfp, %2 £:x);
vet.w i (i]fi]=x:}

loopij(hide_one.input){
scanfifp. "% & x):
net. wofi]{ij=x:}

loopi(output) {fscanf(fp."%XL".net t2+i):)
loopi(hide two) {facanlifp.*%L" net.tl+i):}
loopihide_one) {facanf{fp."%2" net.t0+i);}
fscanfifp,"%d" Lcount);

loopi(hide_two) {facanf{fp.*%2" .net.y2 mank+i):}
ioopilhide one) {facanf{fp.*%XL" net.y |_nask+i):}
loopi(input) {fscanf{fp "%X2* net.inp_mask+i):}
felose(fp):}

write_weights ()

{ FILE *fp:

it ij.k:

char filename{20]:

printf{"\nRater filename: ");

scanf("%s" filenaie);

fp = fopen (filename, "v"):

fprintf ([p."%d %4 %4 %d \a".output.hide_two hide_one.input);

loopij(ontput hide_two)
fpeintf(fp.~Xe *.net.w2(i}{il.ij):

loopij(hice_two hide_one)
fprintf fp.*%Xe " net. wii]l].ij):

loopij(hide_one.input)
fprinmtfifp."%e *.net.wO[i](i}.ig):
loopi{output) {fprintf(fp."%e \a*.net.1+2(i]):}
loopi(hide_two) {fprintfilp.*Xe \a".net.t1fi]):)
loopi(hide one) {fprintf{ip.”%e \n".net.t0fi}):}
fprintf{fp."%d \a".count):
loopithide_twe) (fprintf{fp. %2 \n".nct.y2 mask{i));)
loopi(hide_one) {fprintfifp.”%2 \a".net.y1_mask(i]):}
loopi(inout) {fpeinti{fp."Xe \n*.net.inp_mask(i]):}

21:38 Nor 30 1988

read_weights
1o

120

write_weights

140

150

Page 3 of menu.c

Jal

Rt hal

. Jal -

NP Y

el

!

write_weights—write_float(imenu.c)

feloae({[p):printf{*\n Weights Stored\n");
}

write_std_weights ()

{ FILE *fp:
int ij.k:
char filename{20};
fp = fopen (“standard.wei”."v");

fprintf (fp."%4 %4 %4 %4 \n* output hide two liide_one input):

loopij{ontput.hide two)
fprintf{tp."%e *.net.w2(i](j]iJ):
loopij(hide_two.hide_one)
fprint{fp,"%Xe ~.net.wi{il(i]id):
loopij(hide_one.isput)
fprintfifp.”%X2 ".net.wO[i}(i].ij):
loopifoutput) {fprintf{fp.=%2 \n".net.t2(i]):)
loopi(hide_two) {fprintf(fp."%2 \n".net.t1[i]):}
loopi(bide one) {fprintRfp, %2 \n" .net.10(i}):}
fprintf{fp.~%d \n".count);
loopi(hide_two) {iprintf{fp."%2 \a*.net.y2_mask(i]): }
loopithide one) {fpeintf(fp,*%2 \n".net.yl_maskli]):}
loopitinput) {fprintf(fp.”%2 \n".net.inp_mask(i}):}
felose(Ip):printf{"\n Veights Stored\n"):
}

write_string(x.y.lL.title)
int x.y.l:
char title{20]:

{ char nunder{20}:
1 = (int)(Boat)l/video):
color({8);
reetfi(x—-5.y=5.x4+Ly+15):
color(4):
linewidth(1):
recti{x~5.5=5.x4+l.y+15);
emov2i(x.y-2):
charstr{title):

}

write_float{x.y.l.title.ft a_color)
ft x.y.l:

char title[20):

flont it;

int a_color:

{ char number[20}:
I = (int)({Boat)l / video):
sprintf{nnmber."%3.32° Q1):
color(a_color):

21:58 Nor 20 (988

write std_weiglits

10

a0

write string

200

write_float

Page § of menu.c

ul

L e o o
W

e

rectfi(X=5.y=5.x+Ly+15);
coloe(4);

linewidth(1);
cmov2i(x-2.y):
chaestr(titk);
charstr(nuniber);)

write_int(x.y.title.ft)
int x.y:

char title[20):

int N

{ char number([20};
sprintf{ number *%4a" R);
cmov2i(x.y):
chaestr(title);
charstr(number); }

21:58 Nov 30 1988

writc_ﬂoat—write,int(menu.c)

write int

Page 5 of menu.c

DISPLAY NET((display.c)

......... senee » YT *eee ssse

S~
-
-
L

DATE:10 August 1988
VERSION:

NAME: DISPLAY_NET

MODULE NUMBER: 1.9 .
DESCRIPTION: Displays the Network using Graphics calls
ALGORITRHAI: None 10
PASSED VARIABLES: Nowe

RETURNS: Nonme

GLOBAL VARIABLES USED: Net

GLOBAL VARIABLES CHANGED: Nonwe

FILES READ: Nowe

FILES WRITTEN: Noae

MODULES CALLED: Nome

CALLING MODULES: None

AUTROR: Gregory L. Tarr
HISTORY:

® 2 % B e e 6 LB AEE SRS
3

soey 1] * ‘.‘.OC..‘.O.‘......‘..“‘.....‘.“/

#incinde "net.2"

#inchude "definitions.)"

#include "gl.2"

extern int count.right.good,test . do_sin: 2
extern struct neural net net: |

int activ = FALSE;
DISPLAY_NETY() DISPLAY NET

write_string(-120.652,50,*Yalue"): 40
write_string(580.852.50,"Guess"):

write_string(680.652,50."Right”);

write_string(520.700,(30."Desired Output”);

write_string(30.730.350."Feedforvard Backpropagation Network"):

do_sereen():
if (! activ) {

plotnode (0.net.inp.net.inp_inank.net.y |_mask.net. w0.input hide one);

plotnode (L.net.y1 .net.yl_mask.net.y2_mask.net.w(hide one hide_two):

27:59 Nor 30 1988 Page 1 of display.c

- s ——. e

™

DISPLAY NET-plotnodei(dispiay.c)

R plotnode {2.net.y?2 net.y2 mask net.outp_mask.net. w2 hide twocatput);

write_string(100,220, 120."Veights*):

Q)ahe { 50
plotuode {0.net.inp.net.inp_mask,net.y 1_mask net.aw0 input.hide_one):
plotnode {Laet.yl .net.yl_mask uet.y2 mask.net.aw! hide one hide_two):
piotnode {2.net.y2 net.yZ mask.net.outp mask.net.aw2 hide two.output);
write string(100,220,120,"Activation™);}
plotnodei(3.net.ontp,output); ' T
plotnoded(3.0.pet.doft.outpnt):

Widosin == FALSE){
plotnoded(3, 100.net.doft.output);

plotnoded(3.200.net. Jolft output):)
/ terste_ervor(): 4/

L]
check_mounse(); -
}
foat thresliold= 0.0;
plotnodei(x.node lower) plotnodei
int x;
0
float node]):
iat°
{ it ijk.y.x2.y2:
y=apcing*x+30;
x=(1024—wright s%lower)/2: ‘ fom
loopitlower) {
set_color(1.1,0.0).nodefi));
hig plotli* weight_s+x.y.wright s/4%3);
21:59 Nor 30 1938 Page 2 of dispiay.c

= mre— r

plotnodei-plotnodex(display.c)

ifldosin == FALSE){
color_of{0.5.0.5.node{i}):

110
big_plot(i*weight s+x+100.y,weight s/ 1*3);
color of(72.9,0.1 node{i]):

big ;-\t (i*weight s+x+200.y.weight s/4*3):

)
}
120
}
plotnoded(x.y2.node lower) plutnOd(‘d
int x.y2:
float node{):
int lower;
130
{ int ijkx2y:
y=spcing*x+30;
x=(1024—-weight s*lower)/2:
loopj(lower){
loopi(lower) {
140
color_of{0.9.9.1,(Hoat)node{i]):
big_plot(i*weight s+x+y2,
y+weight 82 weight_s/4*3);
1}
plotnodex(x.y2.node. lower) plotnodex
int x,y2;
150
iut node{):
int lower;

{ int ij.k.x2y:
y=spcing*x+30:

x=(1024~weight s*lower)/2:

21:39 Nov 30 1988 Page 3 of diaplay.c

loovj(lower)

loopi(lower) {
set_color(1.0.0.0.(Boat)nodefi):

hig_plot(i*weight s+x+y2,
y+weight_s*2. weight_s/4*3);
1}

#if FALSE

plotnode(x.uode array.lower upper)

int x;

float node{].array{]{size]:

int lower upper:

{ it ij.k.yxlx2.y2:
tlone max.min.temp.temp2;
y=spcing®x+30:
x1=(1024~weight_» lower)/2:
x2=(1024—weight_s*upper)/2;
linewidth(2):

findmax(acray, & max.&minupper lower);
loopi(lower) {

color_of{0.9.0.1.node{i]):
big plot{i*weight_s+x1.y, weight_s/1*3);

loopj(upper) { temp = areay(il[j):
set_color(tnax.min temp);
drawit(x]+weight_8®i,y+weight s*3/4.
x24-weight_8*).y +spcing);
)

}
colorbar(1021-256,y+10.max.min);

}
#endif

plotnode{ x.node, mask. mask_up.array lower.upper)
int x;
tloat node{].mask(] .mask_up().array[J(size}:
int lower.upper:
{ it ij.k.y.x1.x2.y2:
float max.mintep.temp?2:
curmoffl):
y=spcing*x+30;
x1=(1024—-weight s*lower)/2:

21:59 Noe 30 1988

plotnodex-plotnode(display.c)

plotunode

plotuode

Page § of display.c

plotaode—display.count(display.c)

x2=(1024—weight_s*upper)/2;
linewidth(2):
findmax(areay.&max,& min upper Jower):
loopi(lower) {
ftmask(i}==1.){

color of(0.9.0.1.node{i]):

hig plot(i*weight s+x1.y.weight s/4*3);

loopj(upper) {
ifimask_vpfj] == 1.0){
set_color{max.min.areay{i)[i]):
drawit(xl+weight s*i.y4+weight ¢*3/4,
x2+-weight 8*).y+spcing):}
}

}

eolorbar(1024-256.5 410 .max.min);
curson():}

findmax(array, max.niin,outs.ins) findmax

float array(]{sise],*inax. *min;

int outs,ins:

{ it ij.k: 240
it maxi=0.maxj=0;
it mini=0.minj=0:

*min = array(0)0);

*max = array[0][0];

loopi(ins){
loopj(outa){ if (array[j}lil< *min) *min=acray(j]i]:

if (array(jj(i]> *max) *max=areaylj]fi);

1) 0

display_count() display_count
{ iut where = 850;

linewidth(1): =~

color(7);

recti(200,where,923. where4-20);

coloe(500);

recti(800.where.923, where+-20):

colort {):

write_int(%05, where4-2,"* count):} 0

21:59 Nor 30 1988 Page 5 of display.c

—— e s

check_mouse(graphic.c)

/’...O....l.l...!“‘0'."..“"..‘.‘.0‘..."000.0.‘“.O.l.‘.‘.‘.“‘..“".

DATE: 3 Oct 1988
VERSION:

.

[]

]

Ed

d NAME: Graphic Package

. MODULE NUMBER: 1.10

’ DESCRIPTION: Graphic Rostsne for the Silicow Graphic IRIS 3130

. ALGORITHM: None 10
i PASSED VARIABLES: Nome

’ RETURNS: Nowe

. GLOBAL VARIABLES USED: Nowe
’ GLOBAL VARIABLES CHANGED: Nowe
’ FILES READ: Nowe

d FILES WRITTEN: Nome

. HARDWARE INPUT: None

d HARDUWARE OUTPUT: Nome

. MODULES CALLED: Nowe

¢ (’4LL’4V(: A"OD('LES- Nou

]

L

»

.

E]

AUTHOR: Gregory L. Tarr
HISTORY:

SNBSS0V SEPREVSORSELIV RIS VISRSCINICESNONISS L L1 yoRe -/

#inclnde”g) .2"
#iucludedevice.b”

#iuclude "detfinitions.h" 30
extoru float history(l:

oxtern int count display.do_sin:

int fast = O:

check_mouse() checkmouse
{ short val:
float temp xtemp.ytemp:
Screencoord xs.yvs: «w
int whichx, whichy:
char message(20]:
if (qtest()i=0){

xs=getvaluator(NOVSEX):
ys=getvaluator{ MOUSEY'):

s = (int)((float)xs / video):

s = (int){(Hoat)yn / video): 8at
whichx = (xs=30)/100:

whichy = xa/50:

22:00 Nor 30 19838 Page 1 of graphsc.c

check_mouse—blowup(graphic.c)

switch {gread(&val){

case MIDDLEMOUSE: ifivalz=1){

blowap(xs.ys);} “
else {
restore_screen()
clear_screen():}
break:

case LEFTMOUSE: ifival==1){ : ™
findnode(xs.yeV:

break:)
cane RIGHTMOUSE: #fival==1}{

if (ys > 885){ #0
switchy(whichx){ -
case 4:fast = l:hreak:
cane 3:exil(0):break:
case 2:menn():brenk:
cnse |:anske_graph():hreak;
case U:while(vai==1) yread(&val);
while(vali=1) yread(&val);
broak:
}

break:}

DISPLAY _NET();

}
)

hlowup(xs.ys) blownp

1

Screencoord xs.ys:

{Serrencoord xc.yc:

cnresoff():

22:00 Nov 30 1988 Page 2 of graphic.c

blowup—make graph(graphic.c)
xe=getvaluator{ MOUSEX):;
ye=getvaluator(MOUSEY):
10
viewport(xc—100,xc+100.yc—100,yc+100):
linewidth(2):color{512):
recti(x8—05.y8—95 x3+95,y8+95); B
coloe(0):clear(): .
ortho2(((oord)xs—20..(Coord)xs+20.,{ Coord)ys~20..{Coord)ys+20.); R
120 :
} :
restoge_screen() restore_screeu
viewport(0.(int}(1023. * video). 0 .(imt)(767.0 * video)):
ortho2(0.,1023..0..767.);
}
1an
color_of{ hi.lo.value) color_of
float hi.lo.vaiue: :
{ color(INDETERM): ‘
if{valne > hi) colo{fHARD_ON);
]
ifivalne < lo) color(HARD_OFF); :
} 140
/* 600.900.470.620 */
minke_graph(x.y) nmke,graph
fluat x.y:
{ int iindex:
char muub(S});
cursoff():
if (count < display) returm:
viewport((iut)(x * video).(int){(x + 30C.) * video), 150
(int)y * video).(int)((y+150.0) * video)):
iflconnt < 10000)
ortho2(0..(Boat)count, —~0.5. history[0]):
else
ortho2((float)count — 10000..(Boat)count. —0.5.history{0]):
22:00 Nor 30 1938 Page 3 of graphic.c

}
ke ool Prawimes ot 0

v,

{

e

o

make_graph—colorbar(graphic.c)

color{ 1000):
clear();
color{ 1001);
index = count/displsy;
loopi(index){ /* horizontal */
wove2((float)(i*dmplay),~0.5);
draw2{(float }{i*display),history[0]):}
ido_sin != TRUE)
{ index = (int)history[0):
loopi((imdex)){ /* verticle */
nove2(—0.5.(8oat)i):
draw2((fBoat jcount.(Boat)i):] }
color(YELLOW);
index = count/display:
move2(0, history(0]):
loopi(index+1)
deaw?2((float)(i*display). history{i])):
restore_screen():
write_float(({in¢)x.(int)y+130,50."" history(0].1000);
write_float{{int)x.(iut)y+30.50,** historyfindex].1000):

write_string2((in¢)x +50,(int)y,130,"Brror History");
curson();

}

colorbar(x.y.max.min)

int x.y:
float max.min;
{ imt i;
char maxstring{20].minstring(20}:
x —= R:
for (i=8i<TABLE:i++.i++){
color{i):
big plot(x+i/2%(512/TABLE)-20.y.18 (512/TABLE)):)

sprint{ maxstring, “%3 . 32" .max);

22:00 Nee 30 1988

190

colorbar

20

Page { of graphic.c

[

R B R R [

colorbar-big plot(graphic.c)

sprintf{minstriug,“%3.32" min);

colot(YELLOW):

cmov2i{x+20.y):

charstr{minstring):

emov2i(x+160.5): 2%

charstr{maxstring).
}

set_color{max.mia,value) set_color
float niax.min.vaiue:
{ float percent:

it colx:

ifivalue > max) value = max:

ifivalue < min) value = min;

percent = (value—min)/(max—min) * (Soat)}(TABLE~9);

colx = (int)percent + 8:

color{colx):

240

}
#if FALSE
big plot(x.y.dot) big_plot
imt x.y.dot;
{
/* recif{(float){r~dot/2).(float)(y). %0
(flost){z+dot/2).(Roat)(y+det)):
drawii(z.y.r. y+siz¢_of dot):
*/
}
Peudif
bhig_plot(x.y.ww. hh) : big plot

™
int x.y.ww hh:

{

22:00 Noe 30 1988 Page 5 of graphic.c

NEER 7% R B 0 A T SR 4 IV & R

“

[AV TSN

4

k
: o
big_plot—textptl(graphic.c) :
mtﬂ(ﬂoﬁt)(x—ww/ﬂ.(ﬂolt)(y). ‘-j

(ﬂoat)(x+w'/2).(lolt)(y4-"": ’
} 2T S
2 L
drawit(xstart ystart xend.yend) drawit ‘-"
int xatart ystart xend. vend:

{
mow?((lod)nurt.(lont))um): :
draw2((float)xend (Boat)yend): ~4

) 0

drawiti(mm.ymn.xeml.ymd) drawit-i g

int xstart.ystart xemd.yend: . 5

{

{ .
move2i{(Buat)xstart (foat)ystart); o
draw2i((Boat)xend.(Boat)yend); L

drawit2(xstart.ys'art x=nd.yend) drawit2 A

-1 o
float xstart.ystart xend yend:

{ -
ove2{ xatart.ystart): -_j
draw2(xend yeud): :

}

clear_screen() clear screen :

{ 301 ® g

cursoff{): 'J
color(9):

clear():

textpti():

curnon():} :

| _ . i

textptl() /* Used for menn */ textptl)

{

b e
u-xtpoﬂ(?ﬂ.(iﬂt)(480.‘\'ideo).(iut)(4w.‘vit|00).(in¢)(7w.‘\'ideo)):

i : pagecolot({ 1000): .
texteotor{ CYAN):)
systeny("clear”):} -

22:00 Nor 30 1988 Page 6 of graphic.c

.

i .;'. . . : . . .

B B
L T

e

init_dav()

{
gbegin():
reslore screen() .
geoufig():
textipt, ()

)

init_screen()

{ int ij.k.red.green.blue;
ghegin():
restore screen() .
sconfig();

napeolor(1000.100.100.100):
mapcolor(1001.50.50.50);

textpti():
clear_screen():

/*
cmon2i(430,650):
charatr("“Actual”);
emori(580,650);
charstr("Guess™);

cmor2i(630.650):

charstr("Right”):

!
qdeviee{ MIDDLEMOUSE);
queviee{ LEFTMOUSE):
gdevice{ RIGH'TMOUSE):

for(i=TABLE k=0 j=8;« TABLEj++){

if i<(TABLE/2))

textptl-init screen(graphic.c)

{green=(int)({258./TABLE.) * (float)j)*2:

hlue = 256-green :
mapcolor(j.0.green/3.blue);}

red =(int)((256./TABLE.) * (float)(j-TABLE/2))*2:

green=(256=blue);
mapcolor(j.red. green/3.0):}

init_dav
I
it screen
-3
340
-3
A
580 B
’_"-. 4.
A
-

'Lll o

Page 7 of graphic.c

vloe {
}
do_screen():
22:00 Nov 30 1988

}

do_screen()

{

write_string2(30,700,10,"RALT"):
write_string2{ 130.700.50."GRAPE™);
write _string2(230.700.40,"NENU");
wrile_string2(330,700.40.*Quit"”);
write string2(430.700,40."Fast");)

write_string2(x.y.l.title)
int x.y.l:
char title[20}:

{ char number{20}:
[= (int)((Boat)l/video):

colot(5):
teetfi(x=5.y=5.x+Ly+15);
color(-1):
linewidth{1):
recti(x=5.y~5.x+Ly+13)
cmov2i{x.y=2)
chasstr(title):

}

22:00 Nor 30 1988

init_screen—write string2(graphic.c)

e e A e

.do_screen
|

write string2
k1

Page 8 of grephic.c

CHECK_ERRORS(test.c)

/Oﬂt“...‘.“....0‘.‘.‘.‘...‘.‘.‘0.‘.‘.‘.‘.‘00."‘.O‘.‘.“.“‘.““..OOC"

DATE: 3 October 1988
VERSION: 2.0

NAME:test.c
MODULE NUMBER:1.11

ALGORITHAM: None
PASSED VARIABLES: None
RETURNS: None
GLOBAL VARIABLES USED: None
GLOBAL VARIABLES CHANGED: Nome
FILES READ: Nome
FILES WRITTEN: None

" HARDWARE INPUT: Nowe
HARDWARE OUTPUT: Nowe
MODULES CALLED: None
CALLING MODULES: None

AUTHOR: Gregory L. Tarr
HISTORY:

L0 B B B BN RS I I I T T N K R JEE R N JEE B O

DESCRIPTION: Provides for system lest and coaluetion during iraining

.C.“““l.‘...“‘...‘..“.....’.".‘0.“.“........‘.““.'..‘0"...’.’.’

extern int count.right.good.test . exmn_test . examplars.sample ctype:

extern int display:
extern struct neural net net:
int decisions:
flont accuracy:
#inclade “detinitions.h"”
#include “net.A"
#inclnde <math.h>
int mistakes = 0;
tloat history[500):
float erroe(size]:
extern int outlput.input. hide_oue. hide_sero;
CHFECK_ERRORS(y.doft)
float y():
float dofi{J;
{ it ij;
int correct_right=0:
int correct_good=0;
++net. clam_connt{ctype]:)
loopi{output) { errorfi] = (Boat)doftfij- ¥fi):

if (errorfi] < 0) errorfi] = —errorfi):

if (erroefi] < 0.5) (correct_good++:
decisions++:)
if (errorfi] < 0.2) correct_right++:

if (correct good == (ontput)){ good++:
++ttet.class_test(ctype]:)

22:01 Nov 30 1983

CHECK_ERRORS

40

Page 1 of test.c

CHECK_ERRORS~calculate error(test.c)

clse

if (mistakes) printf{*Sample %24 Type %d\a"sample.ctype);

if (correct _right == (output)) right+-+:
}
foat err.olderr=0.0.derverr=0.0;

CRECK(y.doft)
float y{):
float dof[):
{ Boat missed_hy=0:
¢ it i
loopi{output) {
minsed_by = (float)doftfil- y(i}:
err += missed_ by * missed _by;
/* printf(~doft %3.1f y X3.4f ~
) dofifil.afil); */
mised by = 0.; }

clenr_tent()
{inat i:
loopi(output) {net.class_test{i}=0:
net.class_count(i] = 0:)
tight = 0;good = O:decisious = 0.
)
NO_TFEST()
{ imti:
clear_test():
loopi(exam_test){
MAKE_TEST(net.inp.net.doft.i);

FEED_FORWARD():
~. CHECK_ERRORS(net.outp,net.doft):
)
printf{*Test: %3.2¢ %3.2¢ \n*.(float)right/(Hoat)}exam_test*100.,

{Boat)good/(foat)exam test*100.);
clear_teat():

calenlate_error()
{ it ijindex;
err= 0.;

clear_tent():
ioopi{examplars){
MARE_NPUT(net.inp.net.doft i):
FEED_FORWARD():
CHECK(net.outp.net.doft):

)
err = (float)sqri({doublejerr):

22:01 Nor 30 1988

CHECK

clear_test.

DO.TEST
a

calculate error

o

Page 2 of test.c

m

v gy T

———n

| —_

derverr = (err — olderr);
olderr = err:

iflexamplars == 0) err = 100. — accuracy:
index=count/display:
history(index] = err:
err = 0;

}

CUECK2(y.doft)
float ¥{:
Boat doft{]:
{ Boat missed_hy=0:
int iy;
loopi(output) |

missed_by = (Boat)dofr(i]- yiil:
err += missed_by * imissed_by;

missed by = 0.; }

22:01 Nov 30 1988

calculate_error—CHECK2(test.c)

1190

CHECK2

Page 3 of test.c

main(counter.c)

/‘...‘.."‘.“0““.0‘..‘."."O‘“.Ct“'lt‘tt‘."t"‘t.‘.‘.."0.'.‘!."‘.

DATE: 17 Aug 1988

VERSION: 1.0 d
NAME: Counter Propegation Neural Net—Aain Loop

MODULE NUMBER: 2.0

DESCRIPTION: Counterprop mein loop

ALGORITHM: None

PASSED VARIABLES: None 10
RETURNS: None

GLOBAL VARIABLES USED: None

GLOBAL VARIABLES CHANGED: None

FILES READ: None

FILES WRITTEN: None

MODULES CALLED: None

CALLING MODULES: None

AUTHOR: Gregory L. Tarr
HISTORY: 20

® % B % 8 & % % 8 B N B BB % NN

O".‘0‘..0“‘O"OJ.O‘.’O.‘..‘.......‘0‘.‘.‘..‘t‘..‘.“‘.‘.‘.‘..".".“.‘/

#include "net.2"

#include "definitions.h"”

#defive wait(A) if{{count®(A))==0)

struct neural_net net; 30
int input.output,hide_ one=30:

extern sample;

int display = 500;

extern iut menu():

int count=0,right.good guess test: 40
main() main
{

INITIALIZE():

normalize_data():

while (count < 100000) {
/* with counter propagation */

MAKE_INPUT(net.inp.net.yout. —1):

22:0: Nor 30 1988 Page 1 of counter.c

r;

main(counter.c)

FEED_FORVARD(TRAIN),
TRAIN_NET():

/*® remove counfer propagetion fo lest */

MARF._INPUT(net.inp.net.yout —1);
FRED_FORWARD(CHECKIT); &0
CHEC'K_ERRORS(net.yp.net.yout):
wait(display){ SHOW();
DO_TEST():
line: }

wait(display) DISPLAY _NET():

cottgbb:
display_count(): T
H
P
i
\
3
i
22:01 Nor 30 1938 Page 2 of counter.c
4
]
)

o

el 4

ey

(definitions.h)

/..“..‘..“l‘....".‘....‘.‘.‘.'..‘..“..‘....."..“...“““‘.“.““..
”»

. DATE: 11 Aug 1988

i VERSION:2.1

.

* NAME: Defineitons.h

* MODULE NUMBER:

* DESCRIPTION:

. ALGORITHM: None 10
. PASSED VARIABLES: None

. RETURNS: None

. GLOBAL VARIABLES USED: None

. GLOBAL VARIABLES CHANGED: None

* FILES READ: None

. FILES WRITTEN: Noae

. HARDW.ARE INPUT: None

* HARDWARE OUTPUT: None

o MODULES CALLED: None

* CALLING MODULES: Nonc 2
*

. AUTHOR: Gregory L. Tarr

. HISTORY:

2

...“O‘...‘.“.‘""‘.‘...‘O‘..."O‘.C‘.‘..'.“‘OOO‘.OC“OO‘O..OO‘...'.“/

#defiue GRAPHICS TRUE

#dcfine video 0.60

#define loopi{ON) for(i=0:i<ON:i++)

#define loopj(ON) for(j=0:j<ON:j++)

#define loopk(ON) for(k=0k<ON:k++) %

#define loopij(ONE, TWO) for{i=0:i<ONE:i++)for(j=0,j<TWOj++)
#define TABLE 512

#define HARD_ON RED

#define INDETERM GREEN

#define HARD OFF BLUE

#define TRUE 1
#define FALSE 0 0

#define TRAIN ¢
#define CHECLKIT 1

f#tdefine line printf(*\n")
#define disply 100

22:02 Nov 20 1988 Page 1 of definstions.h

#deflne size 200
struct neural net {

float youtfsize]: /* NODE Y owlput famout ¥/
float yp(aize]: /*NODE Y%/

foat yzfsize][size]: /* WEIGH Ts*/

flont zyp(size](size]:

flont z{size): /* NODE 2%y
loat z_con(nize):

flont xplsize): /* NODE X* v
flont xz(size](size]:

float zxp(size][size]:

float inpisize]: /*NODE Xy

22:02 Nor 10 1988

\)‘ R

(unet.h)

n

Page 1 of net b

INITIALIZE (initialize.c)

s08s SRS SRISR VSRS ORES I ENSRRBES2BEPRSSRS VL LSRR ESSSCLES

DATE: 3 Adagust 1988
VERSION:

NAME: Instialization Alodule

MODULE NUMBER: 2.3

DESCRIPTION: Initiglization of the display hardware. 10
any inputl fest dats. end nci data structure.

ALGORITHM: None

PASSED VARIABLES: Nowe

RETURNS: None

GLOBAL VARIABLES USED: Net
GLOBAL VARIABLES CHANGED: None
FILES READ: None

FILES WRITTEN: None

HARDIWARE INPUT: Nome 20
HARDWARE OUTPUT: None
MODULES CALLED: None

CALLING MODULES: None

AUTROR: Gregory L. Tarr
BISTORY:

@ 8 8 8 8 6 & 88 B E NN e e RN e

290290888000 00098 .‘..‘.“‘..‘.‘...‘.O‘.‘.‘.'.““'t‘l’l‘."“".0..800.‘./

#incinde "detinitions.h”
#incinde gl .n"
#includc"device.k”
#incinde <time.h>
#include <stdio.h>
#include <signal.h>

#incinde <math.h>
#incinde "net.2”

extern struct neursl_uet net; “
extern iut input.output hide_one:

float randony():

#idefine TABLE 512

extarn int meun();

INFTIALIZE() INITIALIZE

L1

[* signal allows the menu to be called by & control ¢ */

22:02 Nor 30 1988 Page 1 of imstiglize.c

BN N

'

-~

%

signal(SIGINT ,menu):
init_screen():
init_data();
init_net():

}

init_screenx()

{ im¢ ij.:

winopen("aet®);
ginit():
geonfig():

color{ BLACK):;
clear():
linewidth(1);

coloe{ YELLOW):
cmov2i{40.600);
charstr("Counter Propagation”):

cimov2i(40.550);
charstr{"Seural Network"):

mapcolor{ GREEN.50.50.50):
for(i=TABLE/2.k=0j=8;<TABLEj++)

{ if (1<284) {i—=: mapcolor(j.0.128-i/2.i):}
if (j>284) {k++: mapcolor(j.k.128-k/2,0);)

}
}
init_net()
{ .

it ij:

loopij(output. hide_one)
uet.zypfijj] = 1.0;
normalize_weights(net.zyp.output.hide_one);

loopij{output, hide_ one)
net.ya(illij= randomy():
normalize_weights{net.yz.output hide_one);

loopij(hide_one input)
wet.xzi)(i] = 1.0
nornnalize_weights(net.xz.hide_one.input):

loopij(hide_one inpnt)
net 2xpli]i] = 1.0:
loopi(hide_one) net.z_confi] = 0.0:

2:02 Nor 30 1938

e e e

INITIALIZE-init_net(initialize.c)

init screenx

init net

Page 2 of initialize.c

R e e e e

1
3 (} -\.'
init net-big plot2(initialize.c)
P
normalize_weights(net.zxp.hide_one.input);
|;rintl‘(“Veights Normalized\n");
} 110
normalize_weights(weights.upper.lower) - noraulize weights
3 ﬂm‘ "ish”u:
. int upper lower:
{ it ij=0:
. foat mag: _ 120
loopj(upper){
mag = 0.0;
loopilower) mag += weightafi+j*sise] * weighta{i+j*size]:
mag = sqrt(mag):
loopi(lower) weighta(i+j*size]= weights(i+j*size]/mag;
}
}
float random () 130
{ Boat x;
fat y:
y=(eand(} X 1000} ;
x=((flont)y/1000.0--0.5);
retarn x:
' }
findwode() finduode
{} , 140
big plot2() big plot2
{) ,
)
- >
r)
22:02 Nor 30 1988 Page 3 of imitialize ¢
?

B B X IR O < IR X TR

i I

=

ity

FEED_FORWARD(feedforward.c)

Pr T

DATE:
VERSION:

NAME: Feedforward

MODULE NUMBER:
DESCRIPTION:

ALGORITIHM: None

PASSED VARIABLES: None
RETURNS: Nome

GLOBAL VARIABLES USED: Nowe
GLOBAL VARIABLES CHANGED: None
FILES READ: None

FILES WRITTEN: Nowne
HAARDWARE INPUT: Nowne
BARDWARE OUTPUT: Nowe
MODULES CALLED: None
CALLING MODULES: None

AUTHOR: Gregory L. Tarr
HISTORY:

PRI S S WA Y S S A SO S SN I R B N TN

ss0e s

#finclnde "detinitions.h"
#incinde "net.2"
#include <nmwth.h>

extorn struct neural_net net:
extecn int input.output. liide_ one count:

int max_index;

FEED_FORWARD(tst)
it tst:
{ . .
e ij:
float max.templ.temp2.bi:

/* calcalate :'s °/

/* Note that the feed forwand algorithm
works « little differently when actuslly testing
the system as opposcd fo leaching.

For teaching the you! ralue are counfer propagaicd
through the system. For testing gost value arc assemed
fo be zcro.

The test condition siatement in the dosble loop then
accounis for this diffcrence.

»

loopi(hide one) {temipl = 0.0:temp2=0:

22:03 Nov 30 1938

2

‘C..‘C."“0.0..O‘.“‘O“‘UO..‘...“.O“.C/

FEED FORWARD

40

Page 1 of fecdforward.c

SN BRI N B ¢

abme

-

L

—————ah -

FEED FORWARD(feedforward.c)

loopj(input) templ += net.inp(j] * net.xs(i](i);
ifitast '= TRUE)|

loopj(output) temp2 += uet.youtj] * net.yzi)fi):}
net.sfij= templ + temp2:

]* Now find mez of :'s */

max = O:maxjndex = 0;

loopi(hide one) { bi = net.z_conli)/(Boat)count - 1.0/(Huat)bide oue:

if (tst == TRUE) bi = 0.0;
if (hi < 0.02) {
if (netsfi] > max){
max_index=i:
max = pet.zfi]:} })

ffitst '= TRUE) uet.z_con(max_judex] += 1.0;

/* by using on & > symbol dcfaslt is lo the lowest inder
s recommended by Hechi_Nielsen ¢

loopi(hide one) { if (i==max_iudex)
net.3{i]=1.0;

else
net.3i]=0.0:}

loopi(output) {net.ypfi]=0.0;
loopj(hide_one)
{ net.yp(i] += net.syp(illil] * net.s(j}:}}

loopi{input) {net.xpfi]= 0:

loopj(hide_one)
{ vetxpli] += uvet.axpfilij * net.s(j]:}}

22:03 Nov 30 1988

Peage 2 of feedforward.c

|
A

P

+ el

———
TRAIN_NET(trainnet.c)
/ e !] (221 2908888 S0S08008B RS SSESPERRNSESS RIS
]
b VERSION:
. NAME: train wnet.c
d MODULE NUMBER: 2.4
. DESCRIPTION:
. ALGORITRM:
d PASSED VARIABLES:
o RETURNS: None 10
. GLOBAL VARIABLES USED: Weight Vectors
d GLOBAL VARIABLES CHANGED: Weaght Veclors
. FILES READ: Nowe
d FILES WRITTEN: None
’ HARDWARE INPU[: None
’ HARDWARE OUTPUT: Nome
d MODULES CALLED: None
i CALLING MODULES: Mam Loop
&
d AUTHOR: Gregory L. Terr 2
’ HISTORY:
]
* . -.".....“....“.““...‘..‘.“““..“‘.."‘..‘....“.’

#define TUETA FALSE

#inclnde "definitions.k”

#iuclude "net.h"

extern struct neural_net net: 30
extern int ivput.output.hide one;

#define alpha 0.01

#define beta 0.01

extern int nax_index;

TRAIN NET() TRAINNET

{int ij.ka;

/* adjust the weights between the y prime and the : lager */ a0
loopi(output)

netsyp{max_index](i] +=
{—alpha * net.syp[max_index|fi] + beta * net.yout{i]):

/° adjust the weights between the r prime and the : lager ¢
loopi(inpnt)
net.2xpmax_index](i] +=
(~alpha * net.zxp{max_iudex][i] + beta * net.inpfi]):

/* adjust weights between = and v input */ s0

loopi(input)
net. x={inax_index]fi] += alpha * (net.inp{ij ~ net.xz[max_index]{i]) :

22:04 Nor 30 1988 Page 1 of trainnet.c

Y L I

TRAIN_NET(trainnet.c)

[adjust weights between = and y prime */

loopi{hide_one)
net.yz{max index]fi] += beta * (nct.youti] - net.yz{max_index][i}):

22:04 Novr 30 1988 Page 2 of trainnct.c

showinput(show.c)

/‘..."“t“..‘l...Ot..‘.“0‘..‘.“‘O“OO'O’.IOO.’.‘...‘O“.‘.“..“‘O.‘l.

DATE: 3 October 1988
VERSION: 2.0

NAME: Show.c

MODULE NUMBER: 2.5
DESCRIPTION:

ALGORITHM: None

PASSED VARIABLES: None
RET''RNS: None

GLOBAL VARIABLES USED: None
GLOBAL VARIABLES CRANGED: None
FILES READ: None

FILES WRITTEN: None
HARDWARE INPUT: Nome
HARDWARE OUTPUT: None
MODULES CALLED: None
CALLING MODULES: None

AUTHOR: Gregory L. Tarr
HISTORY:

L 2 L L N L 2 2 B R NN N K Y R N R N R N N

o

L e 2 A2 R 222222 2 2]]

#include "net.a"

#iuclnde <stdio.n>

#include "detinitions.h"

extorn int display:

extern struct neural_net not:

extorn int inputoutpat hide oue. right.good;

float DO_CUECK():

extern int count.right.guess good. tent;
SHOW/()

showoutput(ret.yout net.yp):

/.
showweights(net. yz. 1. output hide_onc):
shounode(nel.z hide_one);
showweights(nel.zz, 1. Aide_one.inpet);
showinput{net.inp):
shownode(nel.y2 hide_two):
nodeinfo(800.600):

‘,’

showinput(x)

float x[):

{ intji:
printf{“Counter Propagation Model\n"):
loopi(input) printf(® X(%d) ".i):line:

22:04 Nor .30 1988

SHOW

40

showiuput

50

Page | of show.c

showinput-showweights(show.c)

loopi(input) printf(*%1.2¢ * x[i])dine;line;

showontput({yout.yp) . showoutput
float yout[J: .
float yp{):
{ im¢ ij: . 40
float error:
/.

printf{\nY=~out °):

loopi(outpst) printf("K2.2f ".yout(i]):line;
prnif("Y—prime
loopi(osiput) printf("K2.2f “.yp[i]); line:line;

printf("Count: %64 \nGuess:%i.2f Good: %1.2f Test: %1.2f\n" count. i

(Hoat)right /display®100.0,
{loat)good /display*100.0,
0.0):

header():

/? Iprintf(stderr."Count:%6d GCuess:¥3.2f Cood: %3.2f Test: %.3.2A\n". count,
(float)right/ diaplay*100.0.
{float)good/ display*100.0,
0.0);

/)

shownode(y.n title) shownode

float y[:

int n;

char title{20];
{ it ij:line;

printl ("¥%s ".title):line:
loopi(n) printf("%2.42 *.y[i]):line: %0

}
showweights{w layer upper.lower) S].lOW'W("ightS

float w(][size]:
ut layer upper. jower:
¢ it i
line:
loopi(upper) printf(*¥i(Xd, %d) *.layer.i):line: 100

loopi(lower) {
luopj(upper) { if (w(i]li] < 0.0)
peintf(*%1.32 "~ wj]{i}):
vlse

22:04 Nor 30 1988 Page 2 of show.¢

showweights(show.c)
" printR* %1.3¢ ~.w{ij{i)}
line:}
110
line: }
22:04 Nov 30 1988 Page 3 of show.c

/tt."”t“l‘!.".‘“l’..l‘.“"l“O".O.t.".c‘..".‘.“‘l.’.‘364“"‘300

DATE: 3 October 1988
VERSION: 2.0

NAME:menu.c

MODULE NUMBER:2.6

DESCRIPTION: Provides interactive menn options.
ALGORITHM: None

PASSED VARIABLES: None

RETURNS: None

GLOBAL VARIABLES USED: None
GLOBAL VARIABLES CHANGED: None
FILES READ: None

FILES \WWRITTEN: None

HARDIWARE INPUT: None
HARDWARE OUTPUT: None
MODULES CALLED: None

CALLING MODULES: Noune

AUTHOR: Gregory L. Tarr
HISTORY:

[SN B N N S R 2R R I I IEE JEY T N N L B N

t‘..'.““..l““.“.’.‘tt.".O‘t..‘“..l‘...“t‘.....“‘..800.“."““./

extern int is_class;
extern imt activ;
extern float threshold;

#inchude <signal.h>

#include <stdio.h>

#incinde "detinitions.h”

#include “net.h"

#incinde <glh>

extern struct neiral_net net:

extern int count.right.good . guess,test display;

int wenu()
{ char select. filenane[20]:
printf (® Mema \a"): .
printf (* 1) Save Weights"):line:
printf (® 2) Display Veights”)line:
printf (* 3) Read Weights "):line;
printf (* 4) Change Act Display”):line:
printf (* 5) Show Activation Levels”):ine:
printf (" 6) Show Weight Levels”):line:
print{ (® 7) Change Display Threshold"):line;
printf (* @) EXIT \n"):
printf (* SELECTION: ? "):
select = getchar():
switcely(select) {
case 'e’:
gexit():

22:05 Nor 30 1983

(menu.c)

L 1]

Page | af menn.c

exit(}):
break:
14: write_weights ():
:hreak:
120: printf(*\aVWeights Displayed \n"):
peuse();
breank:
case '3': printf[{"\nEnter Filepame: “):
scanf("%s" filename);
rend_weights (filename);
print{("\n %s Veights Installed\n” filename);
break:
case ’4°: printf ("\nEater Class:");
break:

i i

case '6°: activ = TRI'F;
nodrinfo{ 800,600);
break:

ease '67: activ = FALSE:
nodeinfo(800.600):
break:

case 'T*: printf (“\nEater New Threshold:*“):
s anf(*%2" & threshold):

break:
}
signal(SIGINT .menu): }

read_weights (filenaiie)
char flename]):
{ FILE °*fp:

float x;
#if FALSE

int ij.k:

int foutput.ﬁuput.ﬂ\ide_one.ﬂ\ide_two;
fp = fopen (filename, "z"):
if (fp==NULL)
{printf(*\n sesFile Errorses \n")iexit(1):}
facanf (fp."%d %4 %4 %d".&l‘output,&ﬂ\idv_two.&ﬂtide_one.&ﬁnpm);
if{ (fousput >output)|
(fhide one>hide_one)]
{Mide_two>hisle_two)|
{finput>input))

{print{{("\n eeeFile Too Largesse \n")exit{ 1))

Joopij{ ot put.Thide two){

fscanf(fp."%2".&x):

net.w2(illi}=x:}
loopij(hide_tro.(hide_one) {

facanf(fp %L &x):

net_wifilfj}=x:}
loopij(hide_one finput }{

facanf(fp. %2 &x):

net.wofi)[j]=x:)

22:05 Nov 30 1933

read_weights(menu.c)

S0

40
read_weights

(L.

Page 2 of menu.c

D

loopi(foutput) {fscanf(fp. %2 net.t2+i):}
loopi(fhide_two) {iscanf(fp."%L" net.tl+i):}
loopi({fhide_one) [fscanf{fp."%2* .net.t0+i):}
fclome{fp):

#endif
)

write_weights ()

{ FILE *Ip:
nt ij.k:
char filename(20];
#if FALSE
print{"\nEater filename: ")
scanf(”"Xs" filenanwe);
fp = [open (filensine."w");
Mpeintf ([p."%d %4 %a %d \n".output,hide oneinpnt);
loopij{ontput. hide two)
fprintf(fp.*%2 \n".nev.w2f{i][il.ij):
loopij(hitle_two. hide_one)
fpeintf{fp,"%e \n" vet.wi(i]iilij);
loopij(hide_one.input)
fprintf{fp."%2 \a* net.w0(i][j).i):
loopitontput) {fprintf{fp,"%e \n* net.t2{i]):]
loopi(hide_two) {fprintf(fp.*%e \a"net.ti[i]):}
loopi(hide_ one) {fprintf{lp. %t \a" net.c0fi]):}
felose(fp):printf{“\n Veights Stored\a");

)

#eudif

hiender()

{ int offx=7800ffy=400:

color(1000);

linewidth(YELLOW):
rectfi(oflx.ofly, 1804-offx (it)(70./ video)4ofty):
color(1);

recti(offx.offy. 1804-offx.(imt)(70. /video)+offy);
color{ YELLOW):

write_int(offx+10.0fy+10, "Count:" connt);

write_float(offx+10.0ffv+50,"Right : * (Huat)good/ display* 100):
write_float(offx+(0,0ffy+70,"Guess : " (float)right /dispiay* 100);

wtite_float(offix+10.0ffy+30."Test : " test):
}

22:05 Nov 30 1938

read weights—-header(menu.c)

1o

write_weights

header

Page 3 of menn.c

nodeinfo{offx.offy)
int offx.offy:

{
color(6):

rectfi{ 04-offx.04-0ffy. 1504Tx.80+o0ffy):
color(1):
recti{0-+offx.0+offy. 1 504offx.30+0ffy):
color(4):
cmov2i{ 10+0ffx.55+4-0ffy):
chamtr(*Curreut Display”):
curov 2i(10+offx.40+4offy):
charsir{"Shows");
cmov2i(10+4+offx.25+0ffy):
if (activ)
charstr("Activation”):
else
charstr("veight Levels”):

write_float(x.y.title.ft)
int x.y:

char title[20]:

flioat fi:

{ char number({20};

sprintf{number.*%3.22".R);
cmovZi(x.y):

charste(title):
charstr(number): }

write_int(x.y.title.ft)
int x.y:

char title[20]):

it ft:

{ char number{20):
speint{{nunber.*%d" i)
cmov2i{x.y):
charste(title):
charste(number); }

22:05 Noe 30 1988

header -write_int(menu.c)

nodeinfo
160

170

write foat
1an

o
write_inut

Page § of menn.c

ASS

DISPLAY NET(display.c)

S80S0V ESOPSOOPRESISNSERRESSIR NSRS LS00S SO ICREERIPSOENES VIR RS,

DATE:10 August 1938
VERSION:

/

*

.

-

- NAME: DISPLAY_NET

. MODULE NUMBER: 2.7

d DESCRIPTION: Provides display rostines of counterprop

d ALGORITHAL: None 10
’ PASSED VARIABLES: None

* RETURNS: Nowe

. GLOBAL VARIANBLES USED: None
. GLOBAL VARIABLES CHANGED: Nome
* FILES READ: Nome

d FILES WRITTEN: None

d HARDWARE INPUT: Nonwe

’ AARDWARE OUTPUT: Noue

’ MODULES CALLED: None

* CALLING MODULES: Nowe

g

*

.

.

£

AU'THOR: Gregory L. Tarr
HISTORY:

..‘.‘.‘.“.‘..‘..“‘.““.“...“Ol..“...O..‘....“....‘.‘..‘..“‘...‘l./

#incinde "net.2"

#include “definitions.h"”

#incinde "gl.1"

extorn int count.right.goodl test;

extern struet neural_net net: »
extern iut input.output, hide_one:

int activ = FALSE:

DISPLAY NET() DISPLAY NET
'lﬂ' (! activ) {
plotnodef{0.net z.hide one "Z-FODES"):
plotnodef{ 1 .net.inp.input."X-Bodes : INPUT"); “
plotnodel([.net xp.input,"I-Prime Kodes”):
plotnodef(2.net 2. hide_one "Z-NODES™);
plotnodel(2.net.z.hide_one " *).
plotnodef({3.uet.yp.output.*Y-Prime Nodes"):
%0

plotnodel(4.net 2 hide_ oue "2-Nodes"™):

plotnodel(L.net.inp.input):

22:05 Noe 30 1938 Page 1 of dispiay.c

Wy T e i, e g WY

plotnodel(3.net.yout output,"Y-Nodes™):

plotnode (0.1.net.zxp.input.hide one);
plotnode (1.2.net.xz.hide one input):
plotnode (2.3.net.yz.output.hide one):

plotnode (3.4.net.zyp.b'de_one.output):

}

}

#define weight s 20
]® #difine spcimg 185 */
#define spcing 155

float threshold= 0.0:

plotnodei(z.node lower)

int x.Jowmr:

float nodef);

{ int ij.k.yx2.y2:
y=spcing®x+20;
x=(1024-weight _s*lower)/2;

loopi(lower) {

set_color(1.0.0.0.nodeli)):
big_plot{i® weight s+x.y.weight 3/4*3):

color_of(0.5.0.5.node{i]):

b _plot(i*weight s+x+100.y.weight s/4*3):

color_of(0.9.0.1.node(i]):

hig_plot(i*weight s+x+200,y,weight s/4*3):

}
plotnodef(x.node Jlower title)
int x:

float nodef):

iut fower:
char titlef):

22:05 Non 3(1988

DISPLAY NET-plotnodef{dispiay.c)

G0

plotnodei
L1}

plotnodef

1

Page 2 of display.c

Q/" R B

'Y ...

{ int ij.kyx2y2:
y=speing*x+20:;
x=(1024—weight_s*lower)/2:

loopi(lower) {

set_color(1.05.0.0.n0de(i]):
big_plok(i®weight s+x,y.weight 3/4*3):

coloe(6).
cmov2i(x+150.y);
chamstr(title):

}

plotnodei(x.node lower title"
it x:

fluat node():

int lower;

char title]:

{ int ij.k.yx2.y2:

y=spring*(x):
x=(1024—weight_s*lower)/2;
loopi(lower) {
set_color(1.05.0.0.n0defi));
big _plot(i* weight s+x.y,weight a/4*3);

color(8):
emov2i(x+150.y);
charstr(title);

)

pletnodeh(x.node Jower)

int x;

float nodef];

int lower;

{ it ij.kyx2.y2:
y=speing*(x)+15:
x=(1024—weight_s*lower)/2;
loopi{lower)

set_color(1.0.0.0.node{i]):
hig_plot2(i*weight s+x.y.4.5);

1}

22:05 Nov 30 1988

plotnodef-plotnodeh(display.c)

plotnodel

140

plotnodeh

Page 3 of display.c

Ll Sl b sl

bl e

™

plotnoded(x.node Jower)

int x.nodef].lower;
{ imt ij.kx2y:

y=speing*(x)+20:
x=(1024~ weight s*lower)/2:
loopi(lower) {
color_0f(0.9.0.1.(Hoat)nodeli]):
big_plot(i*weight s+x.
y+weight_s*2,weight s/4*3);

}
plotnode(x.othet array.upper.lower)

it x.other:
float array(jisize]:
it upper lower:

{ im¢ ij.kyxlx2.y2.yup:
fluat max.min temp.temip2;
y=npcing*x+20;
x1=(1024—weight_s*upper)/2;
x2=(1024—weight s*lower)/2;
linewidih(2):

findmax(array.&max.& miu upper lower):

loopi{upper){
loopj(lower) {
set_color(max.min array(ilfi]):

drawit{x2+weight_s*j.y+weight s*3/4,

x14+weight_s*i.other*spcing);
1

colorbar(1024—256,y4-80.max.min):
)

findmax(array.max.min onts.ins)

float array[][size).*max.*min:
int outs,ius:

{ it ig.k;

*min = array(0}[0]:
*max = array[0]{0}:

if (areayfilfij< *min) *min=array(ilfj):

loopij{outs.ins){
if {anzay(i){jl> *max) *max=arraylil(j}:

22:05 Nov 30 1988

plotnodeh-findmax(display.c)

plotnoded
181

plotuode

200

findmax

Page § of display.c

)

Bl

*
FON

R YRR Y I

lud

Aprresengyeaees g

Ny

}

display_count()
{ Boat offx=45.*video.oTy=620.*video:
color{ 1000):
rectf{offx.ofly ~3..0ffx+80..0ffy+ {8.);

color{ YELLOWY);
write_int((int Joffx.(int Joffy.” *.count);}

22:05 Nov 30 1938

L S I T Y R A .~ et .

findmax—display_count(display.c)

display_count

Page 5 of display.c

s .l

#include "definitions.h"
#include "net.h"

fioat history[size]:

extern imt output.input hide_one;

extern int right.good.examplarssample test.exam test;
extern struct neural_oet net:

CHECK_ERRORS(y.doft)
float ¥[).do0[):
{ int iy:
float errotfsize}:
int correct_right=0:
iut correct_good=0:
loopi{output) { error(i] = doltfi} - y[i):
if (errorfi] < 0) error(i] = —errorfi]:
if (errorfi] < 0.5) correct _right++:
if (errorfi] < 0.2) correct_good++:

if (correct_right == (output})) right++:
if (correct good == (output)) good++:

)

flont DO_CHECK()
{ int ij.tright.tgood:
tright = right:tgood = good:
right=0:good=0:;
loopilexamplars){
MAKF_INPUT(net.inp.net.yout.i);
FRED_FORWARD(CHECUKIT):
CUECK_ERRORS(net.yp.net. yout):

}

right=tright.good=tright:

teat = (Hoat)right/(foat)examplars * 100.;
return test:}

DO_TEST()
{ it ij:
right=0:good=0:;
loopi(exam _test){
MAKE_INPUT(net.inp.net. yout. i+examplars):
FEFD_FORWARD(CHECKIT)
CHECK_ERRORS(uet.yp.net.yout):

)

printf{"Test:Right %3.2¢ Good: X3.2¢ \n”.
(foat)right/(float)exam_test*100.,
(float)goodd /(float Jexam _test*100.):

right=0:good=0:}

22:06 Nov 30 1988

DO_TEST(test.c)

CHECK.ERRORS

1"

3

DO_TEST

40

Page 1 of lest.c

main(general.c)

SESEESSBINEEP ORISR ILEESNROSS220S RSP IRVSS2SS8SS

DATE:
VERSION:

NAME: Hybird Neural Net—Alain Loop

MODULE NUMBER: 3.0 .

DESCRIPTION: Hybrid nct w.uin loop

ALGORITHM: None 10
PASSED VARIABLES: None

RETURNS: None

GLOBAL VARIABLES USED: None

GLOBAL VARIABLES CHANGED: Nowe

FILES READ: None

FILES WRITTEN: Nome

HARDWARE INPUT: None

HARDWARE OUTPUT: None

MODULES CALLED: None

CALLING MODULES: None 20

AUTHOR: Gregory L. Terr
RISTORY:

re
TR B R I T T N TN S ST S Y S SRS S S

““....“'.C...l...‘..“‘..‘.‘.“.‘.‘.‘..O"O‘.“’.'OOO‘OO.‘.‘.“..“0.0/

#include "net.h"

#include "definitions.h”

#inclnde <stdio.h>

stract neural_net net:

extern int menu(): a0

int count=0.right.good .guess test display = 500 show_weights=500:

extern int exain_test:
float nhoodf: -
extern int fast; :

extern FILE *fst:

main() main
{ hide_zero = 40 ;

hide_one = 20:

hide_two = 13: 40

nhoodl = (float)hide_zero:

INITIALIZE():
DISPLAY_NET():
while (count < 100000) {

check_mouse():

MAKE_INPUT(net.inp.net doft.~1);

FEED FORWARD():

CHECK_ERRORS(net.outp.net.doft); 50

BACK_PROP():
/* want(100){ perterd():

22:06 Nor 30 1988 Page 1 of gemeral.c

main(general.c)

FIXUP(): '} */

wait(Jisplay)SHOW():

wait(show_weights) DISPLAY _NET():

wait(display) { calculate_error(): 80
: if{exam_test!=0) DO_TEST{():
1 make_graph(500.,560.);
}
ififast ==1) DISPLAY NET():
: countd-: .
: display_count():
}

? fclone{fat):

4 save_weights(): 70
. }

4

{

}

1

!

:

!

. 22:06 Nov 30 1983 Page ? of general.c

]

Y

(definitions.h)
/.‘.‘..‘..“.‘.‘....‘.‘.....““".‘.“...“.'.."'...‘.‘.‘.“.“‘0“"." .
]
* DATE: 11 ..ug 1988
. VERSION:2.1
L 4
* NAME: Defineitons.h
. MODULE NUMBER:3.1
* DESCRIPTION:
* ALGORITRM: Nonre 10
d PASSED VARIABLES: None
d RETURNS: None
. GLOBAL VARIABLES USED: Nome
’ GLOBAL VARIABLES CHANGED: None
d FILES READ: None
* FILES WRITTEN: None
* HARDWARE INPUT: None
* HARDWARE OUTPUT: Noae
. MODULES CALLED: None
* CALLING MODULES: None 20
*
’ AUTHOR: Gregory L. Tarr
’ HISTORY:
L]
""‘..’.“‘...“.‘.‘"“..‘..“.‘.’.l.““.““‘““.‘.“““‘..““.“'l
#dcofine GRAPHICS TRUE
#deflue TABLE 512
#define loopi(ON) for(i=0:i<ON:i++)
#define loopj{ON) for(j=0;j<ON;j++)
#kd-fine loopk(ON) for(k=0:k<ON;:k++) £
#define loopij(ONF, TWO) for(i=0:i<ONE;i++)for(j=0;;<TWOj++)
#detae HARDON RED
#define INDETERM GREEN
#dcfine HARD_OFF BLUE
#if FALSE
#define TRUE 1
#define FALSE 0 a0

#define output 14
#defiue inpat 22
#define hide_one 20
#define hide_two 28
#endif

#define fine printf(“\n")

#dofine disply 100

#define datafile *..\data\ruck.data"
#define speing 150

#doefiue weight s 20

#dofine wait(A) R (conntR(A))==0)
#dofine square(A) ((A)*(A))

22:07 Noe 30 1988

Page 1 of defimtiona h

K o e
v v Yo

— e

N

#dofine NETA 0.3
#define eud_koh 10000

22:07 Nov 30 1983

Page 2 of definiiions. b

(net.h)
#define size 100
struct neursl_net {

float outp(size]:

float doft[size]:

float w2[size][size]:

float aw2(size](size}:

Hoat t2(size]:

foat outp_mask|size]: 10

- float y2(size}:
fluat v2_mask(size]:
float y2_di[size]:

: float wi[size][size]:
float aw | [size](size]:
fluat tl{size}:

float y |[size]: 20
Hoat yi_mask[size}:
float yi_difsize];

float wofsize](size]:
flont awd(size](size]: .
float tO{size]: -

float wk(size][size]:
Hoat awk[size}(size]; 30
Hoat tk[size]:

float kifsize]: -

float k1_mask{size]:

float ki _dt[size]:

float k1_con{size]:

it ki_claim(size];

float inpisize}:

float inp_mask(size]: v
10

int class testnize]:

int class_count{size]:

iut input,hide_zero hide_one hide two.output:

32:07 Nor 10 1988 Page 1 of net.h

INITIALIZE(initialize.c)

LA AL P 2L P2 PR AL PRI RS ISR 2RI 222222 S22 22222222 AR R 2 P22 SR A2 L2222 ¢4

DATE: 3 Asgust 1983
VERSION:

NAME: Initialization Module
MODULE NUMBER: 3.2
DESCRIPTION: Initializat.on of the display hardware.
any inpuil 1cst date. and nel data siructure. 10

/

t]

[4

.

t 4

[]

®

.

&

L 4

* ALGORITHM: None

d PASSED VARIABLES: None

. AETIURNS: None

* GLOBAL VARIABLES USED: Net
* GLOBAL VIRIABLES CHANGED: None
d FILES READ: None

i FILES WRITTEN: None

* HARDWARE INPUT: Noue

* HARDWARE OUTPUT: Nonc

* MODULES CALLED: None

* CALLING MODULES: None

-
»
E]
*

£

AUTHOR: Gregory L. Tarr
HISTORY:

J l.“..tU.“'....“O‘.c‘..‘.‘..‘..‘...‘..’..‘."l"t“.‘.""O..“‘.""CO/
#inclnde "definitions.h"

#includegl .h"

#includendevice .h" 30
#Finclhude <tine hi>

#inclnde <stdio.h>

#ivcinde <signal.h>

#include “net.h"

extern struct neural net net;

float random(); 4
“ #define TABLE 512

. extern int menu();

extern float conscience:

INITIALIZE() INITIALIZE

{)

signal(SIGINT menu):
init_screen():

22:03 Novn 20 1938 Page 1 of imiralize.c

e g et g = — 7

7

0

INITIALIZE-init net(initialize.c)

menu():
}
init_net()
{
int ij:
loopij(size size)

net.w2(i]jj = random():
loopi(size) net.t2[i} = random(});

loopij{size.size)
net.wlfi]j] = random():
loopi(size)net.ti[i] = randora():

loopij(size size)
net.wofilfi} = random():
loopi(size) net.t0fij = raudony();

loopij(size size)
net.wklilj] = 0.0:
loopi(sise) nct.tk(i] = random():
loopi (size)net.k1_coufi] = 0.0;

loopi(sizc) net.kl_claimfi] = —1;

loopi(size) net.y2_mask(i] = TRVE:
loopi(size) net.yl_mask(i] = TRUE;
loopi(size) net.ki_mask(i] = TRUF:
foopi(size) aet.inp_mask(i] = TRUE:
loopi(size) net.outp_mask[i) = TRUE;

}

float random ()

{ Boat x;
int y; .
y=(rand{) % 100) 4 (rand() % 100) 4+ (raud() % 100):
x=({Hoat)y/300.0~0.5);
return X

}

22:08 Nor 30 1938

init_net

sa

Page 2 of initialize.c

FEED FORWARD(feedforward.c)

ERBSBESSRBRISIRNIRESSSSABERSSBIRSSSBUSSFERBOSELRERRSNSC 2922048002302 288

DATE: 13 Sept 1934
VERSION:

NAME: Feedforward

MODULE NUMBER: 3.4

DESCRIPTION: Prorides jorward propagation of the input signel.

ALGORITHM: feedforward ta
PASSED VARIABLES: Nonme

A
*
*
.
*
*
.
-
.
. RETURNS: None
*
t 4
.
»
»
E
L 4
*
*
.
[]
-

GLOBAL V.\RIABLES USED: None

GLOBAL VARIABLES CHANGED: None

FILES READ: None

FILES WRITTEN: None

HARDWARE INPUT: Noac

HARDWARE OUTPUT: None

MODULES CALLED: None

CALLING MODULES: None 2

AUTHOR: Gregory L. Tarr
HISTORY:

SRGESREPERERDSPS RS LS040 LRARNSNPIUBSVESS LSS RSN (21 /

#tinclude "definitions.h”
#include "net.h"

#include <uath.h>

extoern int mininmm,nhood.civpe:
extern Hoat alpha; 30
extoern struct neural net net:
extern iut connt ;

float caley():

tioat calck();

int kelam[size]:

float min_dist:

fluat conscience:

FEED_FORWARD() FEED FORWARD

{ int ij.winner: : w
loopi(input) if {net.inp_mask(ij == 0.0) net.inp{i}=0.0:

/* Kohomen Layer ¥

loopi(hide_zero)
{net.kifi]= calck(net.inp.net.wk net.tk &i.input):)

find_min_node{Xwinner); minimum = winner:
50

/* Regular feedforward with mask for node wacker */

22:08 Nor 30 (988 Page | of feedforward.c

-~

v —y - -

loopi(hide_one)

FEED FORWARD(feedforward.c)

{net.yl{ij= calcy(net.k .net. w0 net.t0.&:i.hide_zero):}

loopi(hide_one) if (net.yl_mask(i] == 0.0) net.y1[i]=0.0;

loopi(output)

{net.outpli]=calcy(net.y Lnet. wl net.t1.&ihide_one);}

#if FALSE

loopij(hide_zero.umput)

{ flvet.inp_nask(jj==1.0) net.awk(i](j] = uvet.wk([ilj] * net.inp(j]:}

loopij(hide_one hide_zero)

{ ifluet. k1_mask{jj==1.0) uet.aw0{i]j] = net.wO[i]{j] * net.k1j]:} 70

loopij{ hide_two hide_one)

{ flnet.yl_mask{j]==1.6) net.awlfil{i] = net.wifi]li] * net.y1[j):}

loopij(output.hide_two)

{ ifinet.y2_ mask(jj===1.0) uet.aw2(i]j] = net.w2{i](j] * uet.y2(jj:}

#eudif
}

float fixy():
float caley(x.w theta.index.lower)
float x[),w[|[size].theta]]:

int *index:

iut lower;

{ int i.k.number;
float y:
y = 0.0;
nmnbher = *index;
loopi(lower){ y = y + x[i] * w{number][i):}
y = y = thetalnumber];
return fixy(y.1.0):}

float fixy(y.hardness)
tloat y hardness;

{

return(1.0/(1.0 + (float)exp(—(double)(hardness * y)))):

float calck{x.w.theta.index.Jower)
Bont x(J.w{[size].theta(:

int *index:

int lower:

{ int i.k.number;
float y:

22:08 Nor 30 1988

B et T R T L

Page 2 of feedforward.c

Sy e — ‘=..-._‘-‘.__~—W7

FEED_FORWARD-findnode(feedforward.c)

y = 00;
-aumber = *index:
loopi(lower){ v = ¥ + square(x(i] — wlnumber](ij):
/* printf(cfi] %3.2f wfi] F3.2f reqr %3.2f y F3.2f \n",
1[i). winumberjfi].square(xfi]— w{namberjfs]}.p):*[}
return (flont)sqrt((double)y):}

float vigilence = 0.1:

find_min_node({ winner)
int *winuer:

{ imt i:
float min.bi.n.distance:
int min_node:
win = 100000000.0:
min_nods = 0:
loopi(hide_zero}{ bi = net.kl_con(i]/(float)count - 1.0/(Hoat)hide_zero;

Hihi> conscience) iflalpha > 0.0) continne:
ifinet k1fi] < vigilence) { min_node = i: break:}
ifinet.k1{i) > min) coutinune;
min = net.kl{i]; min_node = i:}

net.kl_con{min_node] += 1.0
net.kl_claim{min_bode] = ctype:
*winner = min_uode:
kelass{min_node]j=ctype:

min_dist = min; .

loopi(hide_sero){

net k1] = 1.0/(0.10 + net.ki(i]):)
net.k1{min_node] *= 2.0;
)

findnode{xs.ys)

int xs.ys;

{int i layer.the_node.tem):

layer = (ys/spcing);

the_node = (iut)(xs / weight s):
temp = (1024/weight s):
clear_screen():
switch(layer) (

case 0: the_node —= (temp—input)/2;
iflnet.inp_mask{the_node] == 0.0)

22:08 Nov 30 1988

E:i

tio

find_min node

130

140

finduode

150

Page 3 of feedforward.c

Ll bl Al

% W R

(AN

w

net.inp_mask({the_node] = 1.0;
. . @

aet.inp_mask(the_node] = 0.0;
renk;

case |: the_node —= (temp—hide_zero)/2:
ifinet.k1_wmask(the_node] == 0.0)
{ net.kl_mask(the_node] = 1.0;
loopi(hide_one) net.tofi) += net.aw0f{i}[the_node]:)
else
{ net.kl mask(the node] = 0.0;
loopi(hide_one) net.t0i] —= net.awO(i][the_uode]: }
break:

case 2: the_node —= (temp~—hide_one)/2:
ifinet.y1_mask{the node] == 0.0)

{net.y1_mask(the_node] = 1.0;
loopi(hide_two) uet.t1fi] += net.awi(il{the_node]; }

else
{ net.yl mask(the_node] = 0.0;
loopi(hide_two) net.t1[i] —= net.aw|[ij[the_node]: }
brenk:
case 3: the_node == (temp—Dhide_two)/2:
iflnet.y2_ mask{the_node] == 0.0)
{ net.y2 maskfthe node] = 1.0;
else
{ n;t.y_z_muklche_node] = 0.0;

break;
}

22:09 Nor 30 1988

findnode(feedforward.c)

160

1920

Page { of [ecdforwand.c

IR I S)

N

Al

gy e g im _.-.‘*.,.W.T

BACK _PROP(backprop.c)

/ PSSR LER SIS PNI ISP SN RBEVENSSELSISRSSREVSSEE RIS L ERSUVRI0R 2SS

‘.‘.“‘.“O‘"...‘C‘.‘.....l“““l“l’....‘0.‘."‘.“..l“..‘.‘..“‘..“/

#define TUETA TRUE

#inclnde “definitions.h”
#include *net.h"

extern struct neural_net net;
extern int count display;
float neta = 0.3;

float alpha = 0.3,

float deix();

float dely():

int minimum.nhood;

float nhoodf: .
BACK_PROI()

{int ij.k.a.mini:

float min:

float del3fsize].del2(size] dell(nize|.delO(size]:

if (commt > end_koh) {

/* oulput */

20:39 Oct § 1988

€ L mw e
R R I L I N A

e s e Wl el ted Bt a e an e N

* .
¢ DATE: 28 Jaly 1988 .
’ VERSION: .
. .
. NAME: Backprop .
* MODULE NUMBER:

d DESCRIPTION: Using ostput. adjusts wights reduce error. .

d ALGORITRM: Werbos Multslayer Perceptron Beckpropagation. i
d PASSED VARIABLES: Non.

’ RETURNS: None

* GLOBAL VARIABLES USED: WWeight Vectors

. GLOBAL VARIABLES CHANGED: Weight Vectors

* FILES READ: None

. FILES WRITTEN: None

* HARDWARE INPI'T: None

i HARDWARE OUTPUT: Nowe

i MODULES CALLED: Nowe

o CALLING MODULES: Mam Loop

. L]
d AUTHOR: Gregory L. Tarr

* HISTORY: : *
L »

E]
10
*
o
]
t d
L]
-
E
&
L]
d 20
30

BACK PROD

50

Page ! of backprop.c

1
y

]

L

dal

.

BACK _PROP(backprop.c)
loopjloutput) { deldj] = dely(net.outp(j].net.dolt[j]):
loupi(hide_two){
net.w2(il(i] += (ueta * del3(j] * net.y2(i]) * net.y2_maskl[i):
1}
/* Second Hidden */ 0
loopj(hide_two)

{ dei2(j}= delx(net.y2(j].del3.net. w2 output):
net.t1fj] += neta * del2{j] ’
loopi(hide_one) {
net.wij]fi] += neta * dei2[j] * uet.y1i]* net.yl nask(i];
1}

/* First Hidden */

loopj(hide_one)
{ del[jj=deix(net.y1{j].dei2.net. w1 j.hide_two):
net.t0fj] += uetas * delij} :
loopi(hide_zero) {
net.wo[j][i] += neta * del1(j] * net.k1[i] * net.kl maskii]:
b}

} o

/* end_koh is the point where kokonen training is tarned off s/

ifilcount < cndkoh)
/* adjust meighborhood cvery few counts *f
wait(200){ nhoodf = nhoodl * 0.80:
alpha = alplis * 0.95;
color{7):
recifi(45.75,200.95): o0
nhood = (im¢t)uhoodf:
write_int(50,80."Neighbozrhood: * nhood):

}
ifinhood == 0) nhood = I:
iflcount<400) nhood = hide_zero;

/* find min distance node °f

mini = minimune

na
/* adjust neighborhood weights */
for(i= mini— nhood:i <mini+nhood:i++ k=neighbors(i.nhood hide_zero))
{
loopj(input) net.wk(k]li] += alpha * (net.inpfj]- net.wk(k](i]):}
20:39 Oct | 1988 Page 2 of backprop.c

Breme wniv e o g J T e . " . . e

A g .
ool WP PO TP V. B W/ P — . . - N - .k‘n_

SRR N EIUNE (SRNCCI | S A

b R PR

L

LI

BACK_PROP-neighbors(backprop.c)

} 110

}
neighbors(i.neigh.layer) neighbors

it i.aecigh.layer:

{ it x;
ifli<9) x=layer+i:
else x=i % layer: 120
return x;

}

float dely(y.doft)
float y:

int doft:

{ float del=0.0;;

dd = y*(1-y)*((Hoat)dolt—y): 130
returnu del:
}

float Jelx{x.del.w.nupper)
float x.delf) w{[size}:
int n.upper:
{ float deltasum:

e ij:

sum = 0.0:

loopi{upper) smn = sum + deifi] * wiij[n): 140
P~ sum = x*(1-x) * sum;
; return sum;

26:19 Oct | 1988 Page 1 of backprop.c

.
»
.
*
’
’
*
*
.
*
*
.
L
-
*
»
.
*
*
L]
.
Ll

showinput(show.c)

YRSV EEE RIS LIS H LB LSS SRS SSSSEABIIIIECH LA RSP ISARR 493893232

DATE: 3 October 1988
VERSION: 2.0

. NAME:show.c
MODULE NUMBER: 2.5
DESCRIPTION: Displays internal valses in the lertport
ALGORITHM: None
PASSED VARIABLES: None
RETURNS: None
GLOBAL VARIABLES USED: None
GLOBAL VARIABLES CHANGED: None
FILES READ: Nome
FILES WRITTEN: Noae
HARDWARE INPUT: Nome
HARDWARE OUTPUT: None
MODULES CALLED: Nowe
CALLING MODULES: None

AUTHOR: Gregory L. Tarr
HISTORY:

O'..“"‘..“O..l’O“t‘.".“‘..‘O".0...“....’.‘0...“...‘..“‘..“‘O../

#iucinde "net.A"

#incinde <stdio.h>

#incinde "detinitions.n"

extern struct neural_net net:

extern int count right.guess.good.test display;
extorn float nhoodf:

extern float aipha.conacience;

int 10
it 1}
it 12
int 13
int 14

1z

.
.
.

0
0.
0
1

exteru FILE *fst;
SHOW()
{ if{10) showinput{uet.inp) ;
ifli4) showoutput(net.outp,net.doft):

: /*
r /)

printf(*Alphs = %3.2¢ Conscience %3.2f\n".alpha,.conscience);
shownode(net.&1_con.hide_zero."Conscience”);

showweighta(net. wk.nel.ki_con.1.hide_zero.inpul):

Hoat x[):

{ imt ja:
printf(“Nultilayer Perceptron Nodel\n"):
loopi(input) printf(* X(%d) ".i):line;

Q . showinput(x)

22:10 Nov 30 1988

3

SHOW

40

showinput

S0

Page I of show.c

showinput-showweights(show.c)

loopi(ivput) printf{"%1.2¢ *.x[i}):dine:line;

float pright.pgood;
showoutput(y.doft)
float y[I:
float doftf):
{ it ij:
float error:
printf{*Qut: ")

loopi(output) print((*%2.2¢ " y{i]):line;

printf{"DotT: ");
loopi{output) printf{™ %3.2¢ * doft(i]): line:

pright = (Hoat)right/display * 100.0;
pgood = (Hoat)good/display * 100.0;

print{{"Count:%d \nRight:%2.2¢ Guess:%2.2f \n".couant,

pright pgood);
fprint((fst.“Count:%d Right:%2.2¢ Guess:%2.2f ".count.
pright pgood);
fRush(fst);
right=0;
good=0;

}

shownode({y.n.mess)

float y[):
int n;
char messf):
{ it ij:
Boat max.min;
line;
printl ("%s ".mems)line;
loopi(n) printf{*%2.2¢ "yli])line;

}
showweights(w theta layer,upper lower)

float w{)[size].thetal]:
int layer.uppet Jower:
{ iut j.i:
float max min:
line;
loopiflower) {
loopjtupper) { if (wlj]ii} < 0.9)

22:10 Noe 30 1988

showoutput

L]

shownode

showweights

({54

Page 2 of show.c

o

showweights(show.c)

peintf(*%1. 12 *.w[j](i]):

else -
printf(~ %1.12 “.w(]{i}):}

line:} 110
printf{ *\nThetas: \a");
loopi(upper){ printf(“%1.1¢ thetali]):}

line;

32:10 Nor 30 1988

Page 3 of show.c

— e

PRS2 LLBIPRSIBRELBPS SIS INRSS LRI INEER SIS SN ESHRR2E 20838 SSVEVS222488

DATE: 3 October 1998
VERSION: 2.0

/

*

r

*

*

¢ NAME:menn.c

. MODULE NUMBER: 2.6

* DESCRIPTION: Procides of interactive inenn oplions
. ALGORITHAM: None

. PASSED VARIABLES: Nome

hd RETURNS: None

. GLOBAL VARIABLes USED: None

d GLOBAL YARIABLES CHANGED: None

* FILES READ: Nowe

. FILES WRITTEN: Nome

d HARDWARE INPUT: None

i HARDWARE OQUTPUT: None

d MODULES CALLED: None

. CALLING MODULES: None

E]
»
L 4
]

AUTHOR: Gregory L. Tarr
HISTORY:

.“‘.O"““.“.l“‘.O“.‘“..‘...“....“."‘..‘.‘.‘.....‘..“’O......../
extern iut dis_classsample exam_test:

axteru float nhoodf:

extern float add_noise.alpha:

extern int activ.show_weights.display:

extern float threshold.add_noise.conscience:

#inclnde <signal.h>

#include <stdio.h>

#inchwde <gi.h>

#include "../wacker/detinitions.h"
#iuclude "net.in"

extern int mistakes:
extern struct uneural net net;

extern int count.right.good.guess test;
extern int hide_one hide_zero.hide_two,input.oatput:

int wenu()

{ char sclect filename(20]:
int nodenumber selector=TRUE:
systeny("clear”):
printf (" Nemu \n"):

print{ (" 1) Initialize System")line;
printf (* 2) Save Weights"):line:

22:10 Nov 30 1988

(menu.c)

40

Page 1 of menn.c

printf ("
printf ("
printf (®
printf (®
printf (*
peinef (™
peintf (™
print{ (»

3) Read Weights "):line:
4) Toggle Act/Weights“):line:
B) Add FNoise"):line:
6) Display Intervals”)line:
7) Toggle Exrors "):line:
8) New Net Topology”)line:
e) EXIT \n");

SELECTION: 7 *);

fAinsh{stdin):
select = getchar():
switch(select) |
case ’‘e’:

gexit():
exit(0):
break:

case ’1°: init_data();

prinif("Enter alpha,conscience,first,second:\a");

/* alpha = 1.D:comscience = 0.03:hide_zero = 10:
hide ome = 5: ¥/

scanf("%2 %2 %d %d".&alpha.& conscience & hide_zero. & hide one);

printf ("\n¥X3.2¢ %3.2¢ %d %d\a"alpha.conscience,
hide_zero,hide_one);
nit_net():

:break:

case '2’: wril.e_wriglu.s ()

;break;

case '3’ printf{"\nButer Filename: \a ? *');

scan{({"%Xs" filename):

read_weights (filename);

printf{"\a %s Iastalled\n\n" filename);
break;

‘ case '4’: activ = TRUE:

break;

case ’'B’: prinif("How much noise: ?™);

scanf("%2".8:add_noise):
break:

case ‘6’ prinif{"\nCount between Screen Update ?\n"):

scanf{"%d" L:show_weights):)
printf{"\nCount between tests ?\a");
scanl(*%d"” & display);

bhreak:

case '7’: istakes = TRUE:

22:10 Now 30 1988

(menu.c)

50

Page 2 of menu.c

t

read_weights(menu.c)

break;
case '8’: system("clear”):
printf(*New Network Topology\a")
printf{*Nusber in Kohonen Layer\n”): 110
scauf("¥%a" & hide_zero):
printf{*Busber in Pirst Layexr\n"); ;
scanf("%d* .&hide_one): !
print((*Number in Second Layer\n"):
scanf({"%d" .&hide_two):
init_net():
nhoodl = (float)hide_zero:
alpha = 0.5:
nhoodf = (float)hide_zero:

printf(*alzha:X1.3¢ nhood:%.3.22 * alpha.nhoodf); 120
break:
}
signal(SIGINT .menu):}
teadl_weights (flename) read_weights

chiar filename{:
{ FILE *fp:
float x:
int ij.h; 130
fp = fopen (filename."z"):
if (fp==NULL)
{printf("\n sseFile Erroress \n");return:}
fscanf (fp."%d %4 %d Xd %4 ",
&-oulput.&bide,two.&hide_one.&hide.zero.&input):

loopij{ontput. hide_two){
facanfi{fp, %" &x):
net.wzlil[jl=x:}

loopij(hide_two.hide_one){ 140
fscanfifp, %" &x):
net.wifi)li}=x:)

loopij(hide_one hide_zero){
facanf{ip, %e".&x);
net.wOfi}3l=x:}

loopij{hide_zesn input){
[acanf(fp."%e" &x):
net.wk{i]{il=x:]

Gacanf(fp,"%e %2 *.&nhoodf &alpha): 150

loopi{ontput) {facanf{fp."%2% net t24):}
loopi(hide two) {fscanf(lp."%e" net L1 +1):}
lnopi(hide_one) {facanf(fp."%E" net.t0+i):)
facanf(fp."%d". & count):

loopi(hide_two) {l'scaanf(fp."%t".net.ﬂ_mmk-!—i):)
foopi(hide_one) {Tscanf{fp."%2" net.y |_mask+i):}
Inopi{input) {fscanfifp. %2" net.inp_mask+i):)
felome([p):}

22:10 Nov 30 1983 Page 3 of menn.c

Setmame Lt et - -
P e -k 4 el b

read_weights—-save weighta(menu.c)

17e

write_weights () write weights

{ FILE *fp:

iut ij.k:

char filename(20}:

peintf("\oEnter filename: ")

scanf(*%a" filenane):

fp = fopen (filenanw."e");

fprintf (fp."%d %d X4 %4 %4 \n".
output .hid«.-_lwo.l\ide_one.hitlc,zero.input): 170

loopij(output.hide two){ {
fpeintflip."Xe = net.w2{i]{i)44):) fprintf(fp.“\a"):}

loopij(hide_two.hide one)
fprintfifp."Xe .net.wifi}fj}ij):

loopij(hide_otne.hitke_zerv)
fprintfp."Xe *.net.w0fillil.id):

loopij(hide_zero.input)
fpeinti(fp."%e » net.wkfi}li}.id):

fprintf(fp."%e X * nhoodf.alpha):

lnopi{ontput) {fpeintf(fp."%2 \n®.net t2(i]):}

loopi(hide_two) {fprintfifp,"%e A et 1{i]):}

loopi(hide one) {fprintf(fp."Xe \a*,net.200)):)

fpeintf(fp."%d \n".count):

loopi(hide_two) {fprintf(fp.~%e \a" net.y2_mask{i]):}

Joopi hide one) {fprintf{Tp."ke \a".net.y y.mankfi]):}

toopi(iuput) {fprintf(fo."%2 \a" met.inp_wak(i]):} 180
felowe(fp):printf{"\n Veights Stored\n™}

}

save_weights () ' save weights

{ FILE *fp:
int ij.k:
char filename{20}:
fp = fupen ("hydrid_net.w"."v").
fpeintl (fp."%4 %8 %4 X4 %4 \a". 200
out put.hido,two.hidc_one.hide,zero.inpul);
loopij{ontpst. Lide_two){ {
fprintfifp."%e = net. w2{i](ilig):} fprintf(fp.“\a"):}
loopij(hitle_two. hide one}
fprintffp."%2 = pet.wifi){i} i)
loopij(hitle_one hide_zer0)
fprimffp.”%2 « net. wOfi)}}.14):

loopiji hitle_zero.input)
fprintffp.*%2 *.net.wkijli}.ig): 210

fprintf{fp."%¢ Xf » nhoodf.alpha);

22:10 Nor 30 1988 Page { of mean.c

W‘“:&:‘.;._-".t;.:x.":.a..'s R N I

loopi(output) {fprintf(fp *%e \n" net.12{i]);)
loopi(hide_two) {fprintfifp.=%s \n".net.t1i]):}
foopihide one) {fprintf(fp,"%e \n" net.10(i]):}
fprintf(fp. %4 \n".count);

loopi(hide_two) {fprintf(fp.~%zt \n".not.,v?_mmk[i]):}
loopi(hide_one) {fprintf(fp."%e \a".net.y 1_iask[i]): }
loopi(input) {fpriutf(fp.=ye \a".het.inp_mask(i]): }
[closa(fp):printf{"\a Weights Stored\n");

}

write_striug(x.y.ltitle)
int x.y5:

char title[20):

(chiar anmber{20}:
[= (int)((Hoat)l/video);
color(8);
mtﬁ(x—S.y-5.x+l.y+l5)z
color(-1);
linewidth(1);
mti(x—5.y—5.x+l.y+l$):
cmov2i(x.y=2);
chaestr(title);

wrik_ﬂoat(x.,)'.l.ﬁde.ﬂ.a_rolor)
int x.y.):

char title{20);

float R;

int a_color;

{ chiar nmmiber(20):
| = (iut)((ﬂoat)l/video):

sprintf(numbher "%3.3¢% f):
color{a_color);
rectfi(x=5.y~5.x41,y+15);
color{ YELLOW);
linewidth(1):
rmov2i(x.y-2):
charste(title);
charstr(number); }

write_int(x.y.title.Rt)
int x.y:

chm title(20);

int fi:

{ char unmber{20}:

22:10 Nor 30 1988

save weights-write_int(ime nu.c)

3

Wwrite string

240
write float

2%0

write_int
280

Page 5 of menn.c

i el ctinnlls el ittt 3 @ ot B Al e o o aBemam e e A v e e e . v em e e ama—— ¢

write_int-write an_int(1menu.c)

color{ YELLOW;
speintf{number,*%d* f):
cmov2i(x.y):

color (BLUE):
charstr(title):
shamstr(number): }

°
-4
(=3

write_aw_int(x.y.ft) write_an int
ut x.y:
int fi:

{ char number[20]):
sprintf(number "%d".ft):
cmov2i(x.y):
cnamtr{number): } 280

22:10 Nor 10 1938 Page 6 of menu.c

T e N e e ames e mtciauan o s o a e aoa

DISPLAY NET(display.c)

SVSSRESRUBIER IS SRSV PPRQIRISIEVISSLSANEIN RS SV IS SEBINRICEREBENPOP0D

DATE:19 Angust (988
VERSION:

/

*

]

.

*

d NAME: DISPLAY_NET

* MODULE NUMBER: 2.7 :

* DESCRIPTION: Displays internai ralues in a graphic format

b ALGORITHM: Nowne 10
. PASSED VARIABLES: None

* RETURANS: None

. GLOBAL VARIABLES USED: None

d GLOBAL VARIABLES CHANGED: Nowe

. FILES READ: None

* FILES WRITTEN: Noue

d HARDWARE INPUT: None

* RARDWARE OUTPUT: None

* MODULES CALLED: None

* CALLING MODULES: None e
»
”
.
*

AUTHOR: Gregory L. Tarr
HISTORY:

"."’.O.-“.‘O‘l‘l-.."..".t..0'..‘..‘.‘."“"0.."...“‘...‘.“.‘.‘.t‘/

#inclide "net.h"

#incinde “detinitions.h”

#include "gl.n"

extorn int count.right.good test. mininwm.ctype:

extern atruct neursl_net net; 30
extern kelas[):

extern float pright.pgood:

iut activ = FALSE:

DISPLAY_NET() DISPLAY NET

{ it ij.k:
chiar cks{4);
do_screen():
write string(420.500.250."Value Guess Right"):
write_string(-180.540.150,"Desired Cutput”): : 40

write_string(10.730.300,*Hybrid Propagatioa Network"):

if (! activ) {
plotnode (0.net.inp.net.inp_mask.net k [_mask.net. wk.input hide_zero):
plotnodek (f.net.kl.net ki _tinsk net.y 1_mask.net. w0 hide_zero hide_one):

plotnode (2.net.y) et .yl mask.net outp_mask.net.w i hide one.output):
write_string(100.220.120."Veights”):}

else {

22:11 Nov 30 19398 Page 1 of display.c

U LM s D e Bk, e A AN i e e 7 o A Aos i 2= o8 as o aat - maemmem e o e e s

DISPLAY NET-plotnoded(display.c)

plotnode (0.net.inp.net.inp_mask.net.kl_mask.net.awk.inpnt hide_zero);
plotnodek {1.aet.k] net k1_mask net.y |_mask net.aw0 hide_zero hide_oune):
plotnode (2.et.yt ety l_mask,net.outp_mask net.awl hide_one.output);
write string(100.220.120."Activation®);}

plotnodei(3.net.autp.ontput);
pintnoded(3.0.net .doft ontput):
plotnoded(3.100.net.doft output);
plotnoded(3,200 net . doft .output):
plotnoder(0.7.0.00t k1. hide_2er0);
plotstats(};

check _imouse():

}

plotstats() plotstats
{ i

write_float(10.320.130."Right: * pright. (000}
write_float(130.320.130."Guess : *.pgood.i00V):}

float threshiold = 0.0;

pietuodei(x.node.lower) plotnodei
it x:

' Hoat node{]: 80
int lowee:
{ it ij.k.y.x2.52:

y=speing*x+30;
' x=(1024—weight s*lowet)/2:
loopi(lower) {
set_color(1.1.0.01 mode(i)):
big_plot{i*weight _s+x.y. weight a/4*3):
colur_of(0.5.0.5.node{i]): vo
big_plot(i®weight_s-+x4100.y.weight s/4*3);
' color_of(0.9.0.1 node(i)):
big plot(i®*weight_s+x+200.y, weight s/4*3):

_)
))

plotnoded(X.¥2.node jower) plotnodod
1 int x.v2: 100
it vodef):
int lower:
) { int 19.%.x2.y:
y=xpeing*x+30:
x=(1021-weight s*lower)/2:

2211 Noe 30 1988 Page 2 of display.c

Ex

ti

t

loopj{lower){
loopi(lower) {
color_of(0.9,0.1 {floatjnodefi]):
big_plot(i®weight s+x+y2,
y+weight_s*2,weight_s/4*3):

11}

plotnoder{x2.y2.node lower)
float x2.nodef}:
iut ¥2;
int lower:
{ imt ijkxy:
float maxr.minr:
char temp{3):
y=(iut (spcing*x2+35):
x=(1024-weight s*lower)/2:

findmaxnode{ node & maxr. L minr.lower):
colorbar(100.50.maxr.minr):
loopitlower) {

set_color{maxr.minr.node(i]):
hig_plot{i* weight _s+x+y2.

y+weight_s*2,weight_s/4°3+1):

color{(YELLOW);
write_an_int(i* weight s+x+y2-3,
y+weight_ 8*2+4 kelasa(i]):

1}

plotnode{ x.node. mask.mask_up.array.lower.upper)
int x:
Hloat node(].nask(.mask_up(].areay{{size]:
int lower.upper:
{ int ijhyxlx2.y2:
float max.min. temp.temp2:
cursoff().
y=speing*x+30;
1 =(1024=weight_s*lower)/2;
x2=(1024-weight_s*upper)/2:
finewidth(2):
fndmax{array. L max. L& min.upper.lowet):
loopitlower) {
fimankfij==1.){
color_of(0.9.0.1.node i)):

hig_plot(i® weight s+ x1.y.weight s/4*3):

loopj(upper) {
iflmask_uplj] == 1.0){
set_coloe{max.min.array{il(i]):

22:11 Noe .10 1988

plotnoded-plotnode(display.c)

110

plotuoder

plotnode

L4

Page 3 of diaplay.c

[

L}

-

0

i1

PPV NS ———

i ittt s cetits M

deawit(xl +veight_s‘i.y+weight_s‘ 3/4.

x2+weight _s*j.y+spcing):}
}
)

colorbar{1024~256.y + 20.maxanin):
curson{):}

plotnodek{ x.node.mask amask_up .array lower.upper)
int x:
fioat node[].nmsk[].mask_up[].:u'ray[][size}:
int lower.upper:
{ int ij.k.yx1x2.¥2:

float max.miu.tenp.temp?:

cursoi():

y=apeing* x+30:

x1=(1071—weight s*lower)/2:

x2=(1024 — weiglt s*upper)/2:

linewidth(2):

findmax({array. Lmax.& min.uppee lower);

loopi(lower) |

flmaskfil==1.}{
loopj{upper) {
fimask_upl] == 1.0){
set_color{max.min.array[il(i)):

drawit(x1+weight s*i.y +weight s*3/4.

2+ weight s*j.y+speing):}

)
}

}
colorbar{ 1024256,y + 80.max.nin);
curson():}

findinax(array. max.min.outs.ins)

float sveay {J{size] *ax, Smin:
int outs.ins:
{ it ij.k:

iut maxi=0.1naxj=0:

it mini=0.minj=0;

*min = array[0]{0}:

*max = array[0}{):
loopi(ins)

loopj{outs){ if (areay[jjl]< *min) *nin=array(j]li}:

if (array(j}fi]> *max) *max=array [j)li}:

A
)}

22:11 Nor 30 1988

plotnode—ﬂndmax(display.c)

150

plotuodek

17

180

100

findinax

Page § of diaplay.c

il N .

L

i R

findmaxnode(array. max.min Jower)

float array{].*max.*min:
int lower:
{ it ij.k;
int maxi=0.maxj=0:
int mini=0.ninj=0;
*min = array[0]:
*max = areay(0]:
louylower){ if (array{j]< *min) *min=array{j}:

if (array(j]> *max) *max=acray(j};

display_couni()
{

linewidth(1):
color(7):
rect f(800.600.1023.620):
color{500);
recti{R00,600.1023.620);
color(1):
write_int(805.603." “.count):}

22:41 Noe 30 1938

B . e _— -

findmax—display_count(display.c)

findmaxnode

3

display_conut

»

Page 5 of displag.c

Wkl

4
1
1

DO _TEST(test.c)
extern iut count.right.good.test. sxam_test examplars sample.ctype;

extern struct neural net pet:

#inclnde "definitions.h”

#inclnde "net.2*

#include <mmth.h>

#include <stlio.h>

int mistakes = 0:

extern FILE *fst;

CHECK_ERRORS(y.doft) CHECK_ERRORS
float y[size|: 10
float doft[size]:

{ it 2§
Boat error{nize]:
int correct_right=0:
int corrcct_good=0:
loopi(output) { error(i] =doftfi]— ¥{i):
i (erroe(i] < 0) erroe(i] = —ereorli]:
if (error{i] < 0.5) correct_good++:
if (errorfi] < 0.2) correct right++:
} 20
if (correct_good == (output)) good++:
vlne
if (mistakes) printf{“Sample %X2d Type Zd\n".sample ctype);
if (correct_right == (output)) right+<+:
}

float err.olderr=0.0.derverr=0.0:

CUECK(y.doft) CHECK
Hont y{size]:
float doft[size]: 30
{ float missed _by:
int ij:
loopi(ontput) {

missed_by = doftfi)- ¥[i]:
err += missed_by * missed_by;
))

DO_TEST() DO_TEST

{ imt i
right=0:good=0:; an
loopi{exan:_test)

MAKE_TEST(net.inp.net.doft.i);
FEED_FORWARD{():
CIHECK_ERRORS(net.outp.net.doft);
}
printf{*Tcas: %3.2¢ %3.2¢ \a".(float)right/(float)exam test *100..
(float)good /(tloat Jexam _test *100.):
fprintf{fst “Test: %3.2¢ %3.2¢ \n".(Soat)right /{float)exam_t~st*100.,
(Hoat)good /(Boat)exan test *100.):
Mush{. .):

riglt =0:gond=0:

22:02 Nor 30 1938

50

Page 1 of test.c

. o) e, e e

PR

.

v -y

perteth()

{ it
orr= 0.
loopi{examplars)

MAKE_INPU F(net.inp.net.doft.i);
FEED_FORWARD():
CHECK(net.outp.uet.doft Scerr):

)

err = (fBoat)sict((donble)err):
deeverr = (err = olderr):
oldetr = err:

}
write_error()

{
write_float{R10,6R0.180,"Change: * derverr.3):
write_float(810.705.130,"Bxzor : ".err3):

}

22:12 Nov 30 1983

DO TEST-write_error(test.c)

perterh

K0

70

Wwrite errTor

Page 2 of teat.e

———n e 8 e v o emne o e e .

(kohonen2.c)

SREBRRBLLEDEPRRIS LS SSUNNSRE LR LIRS ERRERSASE PSSR SR BARIVBIRUESRIR IR S

DATE: 1 October 1938
VERSION: 2.0

/

*

”

E 2

’ NAME: Two Dimensional Kohonen Map

d MODULE NUMBER: 4.0

d DESCRIPTIC .+

d ALGORITHAL: None w0
* PASSED VARIABLES: None

’ RETURNS: None

d GLOBAL VARIABLES USED: None

. GLOBAL VARIABLES CHANGED: None

d FILES READ: None

. FILES WRITTEN: None

’ HARDWARE INPUT: None

* HARDWARE OUTPUT: None

. MODULES CALLED: Noae

’ CALLING MODULES: None)
]
.
»
»

AUTHOR: Gregorg L. Tarr
RISTORY:

..OO..‘O“‘.‘....l.’.“‘..l"...l‘.‘.'l‘.‘.‘.“““.“’Ol‘.“‘Ol“."d.“/

#define kenonen |
[°® I 1ried 1o keep as close to the original arficle as possidle */

#inclnde <math.h>
#include ", . /graph.c”

#deflue side 20 /* define sze of ome side */

#dofine imax side*side /* namber of newrons */

#doflue jmax 2 /* no of imp~ts */

#deflue a0 0.3 /* starting gan ¢/

#define g 0.2 /* yutial:ation factos */

#defive o 1 /* color use in plotting poinis */ 40
#defiue update 1000

emn deusityfunctions {square. triangle. croes):

int ththtt2wOwhlihvivije:

Hloat a.al.a2minyanfimax]jmax].x{jmax].nfimax].y(imax}:

/" a current alpha value
a0 starting alpha value
al
al L]
miny
miimarf(jmar] werghls for ——= 1o ~——=
rfymar) (0] = r value 1f1] —y ralne
22:42 Novr 30 1998 Page 1 of kokonenl.c

main(kohonen2.c)

nfimaz]
gfimaz]

Y/

float random().gauss():

int plotcolort): 0
enutu densityfunctions densit yfunction:

main() ain

/* get type of functica */

initialize():
srand(2.1); /* set seed */
a= a0 al = a; w0 = side / 2: t1 = update; 12 = 10: t = 0: tk = 0; 0

for (i=0: i<imax: i++) |
ai] = 0.0:
for (j=0: j<jmax: j++) {
mfilh} = (0.5-g/2.0) + g*(ifloat)random()):

nfi] = ofi] + mfi]li]*m{ill}:
} /®end jloop */
nfi] = nfi] / 2.0:
} /* end i loop *f &0

update_screen():

I~ /‘ LY PI XTI YYR SRR AR RSP LR AR AR A AR R R 222 2 R 22 R 22 Y g)] ./
i
. while (a '= 0.0)
L -
for (1=1; t<=t]; t4++ tk=tk+1)
l /* th = th+ 1%
} readinput():
miny = nf0}:
for (i=0; i<imax: i++) {
yli) = nfi):
for (j=0: j<jmax: j++) ¥[i] = y{i] - m{i}lj) * x{):
if (y(i] <= miny) { 1
miny = ylij:
¢ =i

}o /*endaf *
} /* end for 1 loop */

al = a*(1.0 - (Boatjt/(Boat)tl); a2 = 1.0 - al:

22:12 Noe 30 1938 Page 2 of kohonen?.c

s

2

‘v

. 3 o ';"_-:;«'.'q".‘r.&ua.c‘;:'r__;.:ux_»-;,,_-_ L RNl il e et it s - e

}

)
U A

L

main-readinput(kohonen2.c)

hl = ¢ R side;
vi = ¢ / side: . .
w = (int)((Hoat)w0 * (1.0 — (floatjt/(Hoat)tl)) + 1:
un
for (h=max(0.h!~w): b<=min(side—.hl+w): h++) |
for (v=max(0.vi~w). v<=min(side~].vl+w): v44) |
i = side*v +h: nfi] = 0.0:
for (j=0: j<jinsx: j++) {
mili] = st*x{i] + a2*m(i](}:
ofil = nfi] + m{ij§]*m{il{i}:
} /* end for) loop */
nfi) = nfi] / 2.0:
} /® end for v loop */
} /* end for b loop ¥/ 120
if ((x{0] < 0.5) &&(x[1)<0.5))
color{ WHITE):
clse color{ MAGENTA):
big_plot(h1*10+42.4004+v1%10.5):
plotinput();

if ((t % t2) == 1) update_screen();
/* end for 1 loop *f
= 0.2%; w0=0: ti=5%{; t2=5%2;
/* end while loop */

end main program *f

readinput() readinput

it inside:] 140

inside = O;
while (inside == 0) {

makeinput():
awited (densityfunetion) {

}

}
A

2242 N

cane square inside = |:

break:
cnase triangle : if (x{1] > 2.0%(aba(x[0] — 0.5)) inside = I;

bhreak: 180
CAse Crose : if ({fahs(x[0]~0.5) <= 0.1) ||

(fabs(x{1]-0.5) <= 0.1)) inside = 1:

hreak:

]® end of case */

[* end while loop */

cnd readinpe? */

or 50 1988 Page 3 of kohonenl.c

readinput-drawdistribution(kohounen2.c)

#if FALSE ' 160

hig_plot(x2.y2.81) big plot
it x2,y2.si:

{ linewidthisi):
drawit(x2.y2.x2.y248i):
linewidth(1):

}

#endif .
plotinput() plotinput
{ int ax.hy:

ax=(in¢)(200.0 + x(0] * 200.0):

hy=(int)(400.0 + x{i} * 200.0):

big_plot(ax.by.3):}
minkeinpat() makcmput.
{ 180

x[0)=gaumn()

x{1]=gauml): }

flont gaume()
{ it i tinwa=5;
fBlont x)=0:
for{i=0:i<imen;i++)
x1 += randony):
x1 = x1/times:return xi:}

drawdistribution() drawdistrihution

{

#deflue xw 300 /* define r widih of plotting cmdow */
#define yw 300 /* define y wrdih of plotting window *f
#deflue xhase 0 [/ where 120 s on sereen */
#dofine yhase 0 /® where y=0 2 on screen *f

it x1.y1.x2.y2; 0
/* end of case ¢/

xhase:
yhase:
x2 = xw 4 xhase:
¥2 = yw 4 yhase:
colne(YELLOW):
cmov2i{ 50.320):
chamtr(*Xohonen Topology"):

x1
¥l

mHnn

color(WHITE):

32:12 Nor 20 1938 Page { of kokomen2.c

o

-y

drawdistribution—drawline(kohcnen2.c)

recti(x1.y1.x2.y2):

color{ CYAN):
enwov2i(50.620):
charstr{"Xohonen Map"):

color(BLUE):

recti{0.400.200.800):

color{('YAN::

cmov2i(2.50.620):
charstr("Bormalized™):

emon 2i{220.605):

charstr("Input Distribution”):

color{ BLUE):

recti(201, $00,400,.500):

colot{ YELLO™W):

)
)

for (+=0: h<side; h++) |

x1 = (xw * mfh}[0) 4+ xbase:
yi = (yw * mh}{:]) + yhae:
x2 = ‘xw * miside*hj{0]) + xbase:

¥2 = (yw * miside*h]{1]) + yhase:
drawline(&:xi &y 1lside): drawline{:x2.Ly25ide*h.1):

for {v=1: v<side=]; v44) |
deawline(&x 1 &yl side®v+h.0)
drawline{&x1.4 y L side®v+h side),
deawline(&:x? L y2.sire®h$v.0):
Jrawline(8:x2.& y2.side*4v.1):

} /* end for ¢ loop ¥/

drawline{ &x1 &y side®(side—1)+h.0):
drawline{ & x2.8:y2.side*h+side—1.0);

]*® end Jor h loop */

]* end drwdistribution */

deawline(xk yh.i2.e)
int *xb,*ybh.i2e:

{

]

int xo.yo:
%o = *xh: *xh = ((xw/2.0) * (m[i2][0} + m[i2+][0])) + xhane:
vo = *yh: *yh = ((yw/2.0) * (m{i2J{{] + mfiz+e]{1]N) + yhane:

deawit(xo.y0.*xh.*yh):
/* end drawline =/

22:12 Nowe 30 1988

240

280

drawline

Page 5 of kohonen2.c

Fr e e~

o

drawline-plotweight(kohonen2.c)

max (a.b) max
it ab;
{ if (a>b) return a:

vise returu b: 270

}

min (a.h) min
int a.b:
{ if (a<h) return a;

else return b:

)
float random ()
{ Hoat x:
z= ((float)rand() / 32768.0); %0
reéiurn X

#dofine weight s 8

plotweight() plotweight
1 int ij.k.which.ix.iy:
tlont wminweight . maxweight: . o
minweight=m{0]{which];
maxweight=m{0}{which]:

[® Get marimem and mimimem weights for plotting ¢/
for(which=0:which<jmax:which++)
{for (k=0:k<imax:k++){
if (m{k]){which]>niaxweight) maxweight=m[k]){which}:
if (nifk]}{which)<minweight) minweight=mfk]{which}: }}

/* Now. plot the werghts ¢/
w0
for({which=0:which<jmax:which++)
for (k=0:k<imax:k+4){
ix=4504220% which+{ weight s+2)*(k/side):
iy =400+ weight _s+2)*(k%side);
~olor{ plotcolor{ maxweight minweight m[k](which])):
hig_plot(ix.iy.weight_s);
} ne
/® display a color bar to show the rmange of the werghts *f
colorbar{400.350. maxweight .minweight).
}
22:12 Nov 30 1938 Page 6 of kokonen2.c

v —— g

plotweight—update_screen(kohonen2.c)

#define TABLE o4
int plotcolor{max.min,value)
float max.min.value; 320

return 8+(int)(((value~min)/(max-min))*(TABLE-81):}

coiorhar{ xX.y. max.inm) . colorhar
nt x.y:
float max.min;
{ char maxatring{20].minstring[20}:
for (i=8u<TABLE:++){
color(i):
big_plot(x+i®7.y.7):} : 30

sprintf{maxstring.”%3. 32" .max);

aprintf{m. _string.”%3.32".min):
cmov2i(x+50.y+20);
charstr{minstring):
cmov2i(x+400,y+20);
charstr(imaxstriug):

)

write_integer{x.y.title.i) writcinteger
int x.y: 341
char title{20};

it i

{ char number{20]:

sprintf{nnmber,*%d".i):
cmov2i(x.y):
charstr(title):
charstr(nuiber); }

%0
write_float(x.y.title.Rt) write_float.
int x.y:

char title[20]:

float Q;

{ char number{20]:

sprintfluumber *%3.32%.R):

cmov2i(x.y):

charstr(title): el
charste(nuniber): }

update_screen() upe late_screen

{rrawdisteibution():
plotweight():
color{ GREEN):
write_float (700.230.“Alpha:".af):
write_integer(700.200."Count : " tk);

22:42 Nor 30 1988 Page 7 of kokonenl.c

e —“W‘v-*‘[m

W~ g

v —.

swaphuflers();

coloe(BLACK):

clear():)

22:12 Noe 30 1933

update screen(kohoneun2.c)

370

Page 3 of kobonen?.c

B |

#includengl . p"
#includedevice.h”

#deflue video 0.65

initialize()
{ imt i

winopen(”koh"):

doublehuffer() :

geonfig():

viewport(0.(int){ 1047.*video).0.(inat) 1047 . *video));

color(BLACK):

frouthaffer{'I' RVE);

clear():

fronthuffer(FALSE):

clear():

livewidth(1);

name_thingy():

for (i=8:i<64:i4++) mapcolor(i.i®4.i*4.i*4);
clear():

ydevice{ MIDDLEMOUSEF);

}

#if FALSE
check_input()
{ short val;
it x.y:
char mewage[20]:
if (qtent()1=0)(
switch (gread{d:val)){

case MIDDLEMOUSE: /*iffral==1){
z=getralualor(MOI'SEX):;
y=geiraloator(MOUSEY); %/

dis_class = (disclass + 1) R 3;

print{{"hello(1)"):
break:
1
#endif
#ifidef perceptron
#deflne TABLE 511
#define HARD ON RED
#define INDETERM GREEN
#define UARD_OFF BLI'E
initialize{)
{ it ij.k:
winopen("Bet"):

ginit():
geonfig():

22:1.4 Nov 20 1988

initialize(graph.c)

initialize

check_input

40

initialize

Page 1 of graph.c

Ll L Ll L

A

-

color{ BLACK):
clear();
linewidth(1):

color(YELLOWj:
emov2i(400.700):
charste(*Nulti-Layer Perceptron®):

color(8):
cmov2i{ 10.700):
charste{™D of T*):

emov 2i(10.880);
charste("Dutput”);

cmov 2i{RO.6H0):
chasstr{"Actual™);

: emov 2i(1.40.660);
charstr("Guess*®):

emov 2i(220.680);
charstr("Right*):
cmov2i(10.8145):
charsir{"Ride 3"):

~mov2i(10,800);
charstr("Node Y2"):

cmov2i{ 10.430):;
chaeste{"Nide 27):

cmov2i{ 10.350):
charstr("Nods Y1");

vmov2i(10,250):
charstr("Ride 1%);

] cmov2i(10,125);
charstr{"Inputs”):
mapcolor{ GREEN ,50,50.50);
! for(i=TABLF/2.k=0j=8,j<TABLE+R:j++)
{ if (j<204) {i——: mapcolor(j.0.70.i):}
if (j>263) {k++: mapcolor(j.k.70.0):}
)
}
#eudif

name_things()

22:1.7 Nor 30 1988

initialize-name_things(graph.c)

m

1o

nawe _things

Page 2 of greph.c

k|

Li

Tl

name_things—plotfire(graph.c)

color(-1):emov 2i(0.6R0):charstr(“tank™)
color{5):cmov2i(0.620):charatr(" jeap™).
color($):c1nov2i(0.640):charstr(“POL"):
color(7):enon 2i(0.660).charstr(“truck”):

#if perceptron

#define weight s 8

plmweip.ht(x.y.uny.inp.wt.muwei;ht.minwri;lu)
it x.y:

float array():

int inp.ou;

float maxweight.minweight:

{ in¢ ij.k.which.ix.iy:
/* Get manmuam and mimimum weights for plotting *

findmax(array.&maxweight S minweight.out.inp):
colorbar(x.y. maxweight minweight):
20; y +=20;
/? Now. plot the weights line °/
for (i=C:i<ing:i++){
for (j=0j<outij++) {

set_color{naxweight minweight array[i*output+j));

hig_plot(j*weight s+x.i*weight s+y weight a~1):

})

)

plotnode{x.y.node.leng)

int x.y:

ficat nodel):

int leng:

{ int ij.k:

loopi(leng) {
st_color{ 1.0.0.0,nodefi});
big_plot(i*12+x.y.10)
}
}

plotfies{ x.5.hi lo.node leng)

it x.y:

float hilo.nodef]:

int leng:

{ imt ij.k:

loopitleng) {

color_ofthi.lo.node(i]):
hig plot(i®124x.y.10):

]

22:10 Nor 20 1988

1o

plotweight

130

plotuode
140

plotfire

1650

Page 3 of graph.c

NSNS Y RN E 5

AR

}

color_of(hi.lo.value)

float hifo.vaine:

{ colon{INDETERM):
ifivaie > hi} coloe(HARD_ON);
ifivalue < lo} color(HARD_ OFF):
}

plotnodei(x.y.node leng)
nt x.y:
int nodef]:
ot leng;
{ st ij.k:
loopi(leng) {
set_colar((.0,0.0.(80a¢ jnode{i]):
big plot(i*124x.5.00):
}

fiudmax(atray. max.miu.outs.ins)

float arrsy(j.*max.*min:
it outsins;

{ e ijk:

*min = seray[0):

*inax = array{o):

Joopi(onia®ins){if (arrayfil< *min) *min=array{il;

if (aeray(il> *max) *max=acray(i]:

plot_node{);

colorbar(x.y. max.anin)

it x.y:

float max.min;

{ imt 1
chiar magat ring(20].minstring{20]:
for (i=Ri<TABLE48 14+4.i+4+){

32:4.1 Noe 70 1983

plotfire—colorbar(graph.c)

color.of
[

plotuodei

{190

colorbar

Page { of graph.c

color{i);
hig plot2{x+i/2.y.1.10):}

sprintfimaxstring.“%3 . 32" .max):
sprintf{minstring.*%3. 32" min).
/* color({BLUE):
beg_plot2(r430.3+20.80.10):°/
color{ YELLOW):
ctmov2i(x.y):
chaeste{ minstring):
/? coler(BLUE):
big_rlol2(r+ 195 9+20.80.10);
color(YELLOW):*/
cimwov2i(x+ 180,y):
chamstr(niaxstring):

}
st _colot{ max.nin, value)

float max.min.valve:

{ Bomt pereent:
int colx:
ffivalue > max) valne = nax:
fivalve < min) valve = min;

' percent = (value—min)/(max—min) * (Soat}(TABLE~2):
colx = (imt)percent 4 3:
culor{colx):

}
#endif

big_plot(x.y.siar_of_dot)

int x.ysise of dor:

{ linewidth{size of_dot):
deawit(x.y.x.y+size_of_dot);
livewidthi }):

}

big plot 2(x.y.ww. hh)

int x.y.ww hh:

{ linewidth(ww):
deawit(x.y.x.y+bh):
livewidth(1);

}

drawit(xstart ystart Xen:. yend)

int xetart yatart.xend yend:

2214 Nor 20 1989

colorbar-drawit(graph.c)

2un

0

set_color

240

hig plot

hig plot2
be]

drawit

M0

Page 5 of graph.c

drawit—drawit2(graph.c)

{

moveZi(xstart ystart):

deaw2i(xend.yend):
)
drawit2{ xstart. yatart xend.yend) drawit2
Boat xstart.ystart.xend.yend: 270
{

move2(xstart. ysiart):
. draw2({xend.yend):
)

)

22:4.2 Nov 30 1988 Page 6 of graph.c

— P m——

main(Error_ surc.c)

SRSV IPRNVEEUNGRGHEPSPLOBISIPVI LB NI2DS2PPRBERSRP LSRR RSELL 228820 0RY

DATE: 2 Scpt 1983
VERSION: 1.0

/

L]

.

*

»

. NAME: Error Sarface Demonsiration
’ MODULE NUMBER:5.0

¢ DESCRIPTION: Error surface gencration main loop
o ALGORITHM: I'cedforvard Backpropagation
’ PASSED VARIABLES: None 10
* RETURNS: Nowe

. GLOBAL VARIABLES USED: None
i GLOBAL VARIABLES CHANGED: Nowe
d FILES READ: None

¢ FILES WWRITTEN: Nonc

d HARDICARE [VPUT: Nane

¢ HARDWARE OUTPUT: None

¢ MODULES CALLED: None

. CAZLING MODULES: None

E]

L]

*

o

AUTHOR: Gregory L. Tarr
HISTORY:

‘.“‘...O‘..CO...O“‘.“‘.‘.‘l““‘“‘.""...‘..“l““.’O“O.“‘.““O‘/

float wi=1..w2=]. x.youtput.doft.errors= l..target= 0.05:
float oklerror;
float random ():
tloat eandonix():
#dofine video 0.685 an
#incinde "surface.c”
#include <time.h>
#deflue GRAY 1000
#dofine ({RAY?2 1001
flont neta= 0.3:
iut wrong=4d:
int which=0.which2=0:
iut check_mouse():
it count:
flont start_wi start_w2: <0
nmin) main
{ int i
tioat oldwl.oldw2:
loug now;
seand(time(&now) % 37):
surface(TRUE):

init_mouse():

mapceolor{ 1000,100.100.100):

text port(760.1020.0.220): 50
pagecolor{ 1000):

texteolor{CYAN):

systey {"clear™):

22:14 Nor 30 1988 Page ! of Error_wre.c

main—feedforward(Error surc.c)

mentu();
move{wi.w2.4.);
color{ YELLOWY):
1 initialize ():

for(i=0.connt=0:i<200:i++){
while (errors > target) {
makeinput(): 0
| 4 . feedforward():
move{wl.w2.4.0):
oldw] = wlioldw2 = w2:

if ‘which2 == 0)
4 backpropagate().
else backpropagatel():

if (which2 == 1) color{YELLOW}):

? vlse color(RED}): ™
< draw(wl.w2,4.);
if (which2 == 1) color(CYAN):
} else color(YELLOW):
1 pat(oldwl.oldw2,1.0):
il count ‘% 5) == O}{test(i):
screen _two():
screen_onel);
move({w1.w2.4.):}
iflcheck_mouse(} == LEFTMOUSE) break:
count++:} "

printf{start %2.2¢ %2.2¢ \a end %2.2¢ %2.2¢ ",
start_wl.start_w2,wl w2):
initialize ():

crrors = 1.0;

e i

1}
S
; initiakize() initialize
i {wl = randonmy);
4 w2 = randomy():
[mapcolor(2.0.128.0): o0
¢ start_ wi=wl;

stort_w2=w2:

.')
P /* Feedforward backpropegation rules */

frecdforward() feedforward
' { foat tenp:
\ temp = WIS 4+ w2 °y + L /® theia 1s one */
'; output = sigmoid(temp): 100
!

float deltax = 0.0 .deitay = 0.0 :
i Hoat olddely = ¢.0 oklddely = 0.0:
1 flont monen= 0.0:
’
‘ 22:14 Nov 10 1958

Page 2 of Error_surc.c

B e # 2 07 e e o e e e

et o ¢ v e ————— P ———— T T

feedforward-test(Error_surc.c)

Backpropagate() backpropagate
{ Boat del:
olddeix = momen * deitax: 1o
olddely = momen * deitay:

}

del = output * (1.0 — output) * (doft ~ output);
deltax = neta * del * x:

deltay = neta * del * vt

wl = wl + deltax + olddelx:

w2 = w2 + deltay + olddely:

floas V.Q.R.crrorprinee;
Boat Al = 0.1, A2 =0.0 A3 =00 A4 = 0.1, A5 = 0.05: 120
float U fpeine.crrordelwi=0. driw2=0.;

backpropagate2() backpropagate2

{

temt(i)
it i
| toat el:

U = ontput*(1.0—output);
V=x*(A3°wl + A5 *deiwvl) + 5y * (A3 * w2 4+ AS * delw2):
fprime = 11 * V; .
error = 2.0 * (doft ~ output):
=l * error: 130
errorprime = -2.0 * fprime:
R=U! * (errotprimeterror * (1.0-2.0%utput) * V):
delw]l = delwl = A2 ¢ wi
- Ad ? deiwl]
+{(Al*Q+R) *x
delw2 = delw2 -~ A2 * w2
- Ad * delw2
+(AL*Q+R) *y:
wl wl 4+ deiwl:
w2 = w2 4 Jelw2: 140
217

=
printf{®wl %3.2f v X3.2f delwi %3.2¢ dele2 %3.2 \a*",

wi w2.deiwl deiw2):

test

wrong = 0:

X = pix;
y = ply:

doft = sigmoid(2.0):

feeiforward():

del = doft = ontput:errors =sqmare(del):
systeny "cleaz”):

textport(<40.1020.0.220):

2244 Nov 30 1998 Page 1 of Errer_sure.c

————— e

test-propagate(Error_surc.c)

peintl (“Count %d Trial %d \a".count.i):
printf (" doft output error \a”): 180
printf{ (1 %3.3¢7 X3.3f %3.37 \n”.doft.output. del):

x = p2x:
¥y = p2y:
doft = sigmoid(2.0):

feedforward():

dl = doft - output:

printf (%2 %3.3¢ %X3.37 %3.32 \a".doft.output. de!);
erroes 4= syonanydel):

170
x = pix:
y = p3y:
doft = sigmoid(2.0):
femiforward():
el = doft - output:
errors 4= square{del):
printf ("3 %3.37 %3.3¢ %3.3¢ \n".doft.output. del):
X = pix;
y = My 180
doft = sigmoidi(-~2.0):
fredforward();

del = doft ~ outpnt:
rerors += mpuare{del);
printf ("4 %3.37 %3.3¢ %3.37 \n".dof.cutput, del):

x = pix:

¥y = pSy:

doft =sigmoid(~2.0):

ferdforwand(): 1%0
del = doft ~ outpul;

errors += aquare(.lel):

primtf (5 %3.32 %X3.3¢ ¥X3.3¢f \a".doft.output, del):

x = p8x;

y = poy:

dof. = signwid(~2.0);

feedforward():

del = doft ~ output;

crrors += square{del): 200
printf ("¢ %3.32 %3.37 X3.32 \s".dof.outpmt. del):

printl (“RES error X3.2f \a".erturs):

!)
propagate() propagate
{ Boat d-l;
del = output — doft:
wl == neta * el * x:
w2 ~= netan * del * M0
}
22:44 Nov 10 1988 Page § of Error_surc.c

» o

nwkrinpm()
{ mt which:
which = mad() % 8;
switcly(which)
{ cmme 0: x = piy;
¥y = ply:
dolt = si;moid(?.());
bteah
case

= p2x;

= ply:

loﬂ. = sigmoid(2.0);
break;

doft sigmoid(-2.0);
break:

¥:

ugmo«l(-2.0);

I
float random)

{ Boat x;
int y:
y=(eand() % 1$000).
x=((flont)y /4000.0--0. 5):
X=x *40;
return x;

)
float randomx()

{ float x;
int y:
y=(rand() % 200):
=((tloat)y/200.0 -~ 0.5),

retnrm 2.%x:

22:14 Nor 30 ;088

propagate~makeinput(Error s urc.c)

wakciuput

Page $ of Erroc_suer.c

L

\
—— e = e« o

P . s i

makeinput—check_mouse(Error surc.c)

}
init_mouse()

{ wmnpcolor(1000,100.100.100):
wapeolor(100(.100.100.200):
qdevice{ MIDDLEMOUSE);
elevie{ LEFTMOUSE):
qdevies{ RIGHTMOUSE):}

cheek_mowse()

{ short val:
int the_return;
float temp.xtemp.ytemp:
Sereencoord xs.ys:
iut select:
float xvalue:
char nwsage(20]:

if (ytest()1=0){ cursoff{ }:menu():

xs=getvalnator(MOU'SEX);
ys=getvaluator(MOUSEY):

xvalne= (float)(xs—110)%0.02;
if (xvalue > 2.0) xvalue = 2.0:
if (xvalue < 0.0) xvalne = 0.0;
select = (imt)((Boat)ys/20):
switch (yread(&val)){
case MIDDLEMOUSE: ifival==1){
xs=getvaluator{ MOU'SEX):
ys=getvaluator{ MOUSEY)
w2 = (float){xs)/1048.° 2.0;
wl = (float)(ys)/768.* 2.0
}
break:

case LEFTMOUSE: /*iffral==1){ }*/
break:

ense RIGITMOUSE: ifival==1){
fiwhich2 == 0) {

switeh(select) {
cane G: peia = xvalue;

write float (10.120.110." Eta:".neta,C'YAN):break:

case 5: momen = xvalue:

22:44 Nov 30 1988

init_wmouse

270

check.monse

30

Page 6 of Errorsurc.c

o

1

"

- wm— - -

=

check_mouse—write fioat{Error_surc.c)

write float (10.100.110. Mom :".nowmen CYAN):break:
1}

switcly(select){
case 0: Al = xvalue
write_float (10.180.110." a1 :".AL.CYAN):break:

case B: A2 = xvalue:

write_float (10,180.110.* A2 :".A2.CYAN):break:
ense 7: A3 = xvalue:

write_float (10.140.110." A3 :* A3.CYAN):break:
case §: Ad = xvalne:

write_float {10.120.110.* 44 :" . A1.CYAN):break:

case 5: A5 = xvajue: . 0
write_float (10.100.110." A5 :" A5.CYAN):break:
N
switch{select){
case 4 which2 = I
if (which2 == 0) write_string(10.R0,110.*First Order”);
else write_string(10.80.110."Second Order™):
menn{);break:
case 3: ifixvalue == 0.0)the_return = LEFTMOUSE: 340
alse {color{BLACK):clear({); surface(FALSE):menu():}
break:
case 2:
fixvalue == 0.0){while{val==1) gread(&L:val);
while{vall=1) yread{&:val):}
clse exit{0):
break:
}/* end of if ¥/ 8
} /* end of switch */
} /° end of if ¥/
)
enrsond);
return the_return:
}
write_float(x.y.).title.ft .a_color) write_float
it xy.l: £
char title{20): ’
float ft;
int a_color;
{ char nember{20}]:
} = (int){foat)i+100.):
scrren Vhrew!):
speintflinunber *%3. 32" 1);
enlor(a_color): ar
22:14 Noe 30 1938 Page 7 of Error_surc.c

[T

ri

!

write_float-sscale(Error surc.c)

rectfi(x—5.y=3.x+1l.y+15);
color{ YELLOW):

sacale(x +50.y):
linewidth(]);
enov2i(x=2.¥):
charstr(titie);
charste{number): }

write_string(x.y.l tith)
int x.y.l;
char title{20):

{ char number[20):
| = (int)((Boat)l/video):
color(4):
reetfi(x=5.y—-5x+Ly+15):
coloe(4):
linewidth(1):
recti(x=5.y=5.x+l.y+15):
emov2i(x.y=2):
charste(title):

menu()

{ enrnoff():

if (which2 == 0){
write_float (10,120,110, Bta:”.nets.GRAY):
write_float (10,100.110." Nom:".momen GRAY):
write string(10.80.110.* Pirst Order”):}

else { write_string(10,80.110. Second Order”):

write_float (10,180,110 A1 " ALGRAY2):
write_float (10,160,110, A2 :*.A2,(iRAY2):
write_float (10.140.110." a3 :*.A3.GRAY2):
write_float (10,120.110." A4 :".A4.GRAY?2):
write_float (10,100,110, A8 :*.A5.GRAY2))
wrile string(10.60,110,* Next Clear™):
write string(10.40,110,* %alt Quit *):

curson():

}

meale(x.y)
it x.y:

{ int i:
X =x 4+ 50:
linewidth(2):
eolor(YELLOW):
loopi(10){
movei(X+i*10.y 4+5):drawi{x+i*10.y):draw2i(x4+ 104i*10.31:}
draw2i(x+i*10.y4+5): }

22:14 Nor 30 1958

write striug
AN

30

menu

410

sscule

Page 8 of Error_surc.c

R ol

‘- -

| v

—r~—y

SIS SNSPORIB RIS QI RCENSEPSESEI SO SSRGS ES RS SNBSS SSRPREBPESEREPRESSSESEEESS

DATE: 3 October 1988
VERSION: 2.0

/

]

.

.

L]

* NAME: Surface.c

. MOUUCLE VUIMBER:

o DESCRIPTION: Sarface Generator for Error_ surc
. ALGORITHM: None

. PASSED VARIABLES: None

¢ RETURNS: None

¢ GLOBAL VARIABLES USED: Nowe

. GLUBAL VARIABLES CHANGED: None
* FILES READ: Nowme

. FILES WRITTEN: Nowe '

. RARDWARE INPUT: Nome

. HARDWARE OUTRUT: Nonwe

o MODULES CALLED: Nowe

. CALLING MODULES: None

]
t d
L]
L4

AUTHOR: Gregory L. Tarr
BISTORY:

.‘lt‘.....‘.........‘.‘.".“.‘.l..‘lt‘.‘.l.‘.“..‘.‘.‘l“...OO‘.‘.O‘...‘/

/* Begmmming of Second file component ervor.c ¢/

#incindo<gt h>

#include<device. h>

#include<inath.h>

#deflue size 50

#define hello(a) printf{"hello %d\n".a);
#defiue start (5.0)

#define incre (=2.0* start/size)

flont getx():

float signioid():
float the_function():
float square():

float max.min:
fluat array[size)[size):

float plx.ply.p2x.p2y.p3x.ply.pix,pdy.p5x.piy.pox.pdy:

!

/
float herght(r.y)

1= (imt)([LS = 20.)
)= (ni) g/ 1.8~ 20)
= arrayfiffi]:

22:45 Nor 30 1983

(surface.c)

40

Page | of surface.c

B A

38 IS N

B TR R

o

surface(surface.c)
refurn =
)
L]
#define TABLE 512
#define up {0.50 * incre)
S0
iut getcolor():
surface{fast) - surface
int fast:
{ foat x.xn.yn.y:
int ij.k:
Coord pareay{4](3):
Colorindex iareay{4]:
cursoff():
fifast == TRUE) 0
fill_points():
for (i=0:i<size:i++.x=getx(i))}{]
for (j=Uj<sizej++.y=retx())){ ___j
arrayilfi]= (the_function(x.y)): —*
1
findmax(array);]
ginit(): -
geonfig(): 80 j
for(i=' TABLE/2.k=0j=8;j<TABLEj++) -
{ if (j<258) {i——: mapcolor(j.0.128~i/2.i):}
if (j>255) {k++: mapcolor(j.k.128-k/2.0):}}
color(D);
clear(): J
color(BLACK): -
clear():} .
scrren_one{); .
abufier{ TRUE): 00 .
gelear() N
drawfloor!(): -
for (i=l:i<sige=Lit++){x=getx(i)xn=getx{i+1); -%
for (j=1j<size—lj++){y=getx(j)iyn=getx(j+1);)
paceay(0]{0] = x:
pareay[0]{1] = »:
parray[0]{2] = array{i]lil: _.
inreay[0]=getcolor(array(i]{i)):
o0
pacray(1]{0} = xn—up:
pareay ({1} = y:
parray{1](2] = areay{i+U)(i]:
iarray[1}=getcolor(acray(i+1]{i]): ‘%
22:45 Nov 30 1988 Page 2 of surface.c

surface~normal(surface.c)

partay(2)i0] = xn—up:

parray{2(1] = yn-up;

parray(2](2] = arraylis 1j+1):

iarray (2]=geteolor(arrayfi+1]{j+1]): tn

parray{3][0] = x:
parray[3){1) yu-up;
parray(3][2] = array{i]fj+1]:
ineray(3)=getcolor{aeray(i)[j+1]):
apif(4.parray.iarray):

color{ CYAN):
1} 170

zbuffer{ FALSE):
curmon():

}
fill_points() fill points
{

plx=90.5:
ply=25;

p2x=pix + randomx(); 130
p2y=ply + raudomx();

p3x=pix + randomx():
pI¥=ply + raudomx();
prix=3.0;
Hy=1.0:

phx=pdx 4+ randomx(); 140
piy=pdy + randomx();

Mix=pix + randonwux();
poy=ily + randonix();

}
geteolor(z) getcolor
float 3:
130
Colorindex light:
light = ((‘olorimlex)((TABLE~20)‘(z~min)/(max—min)):

return (light+3);

noemal(x.yv.z) nornal
float *x.*y.*1:

22:15 Nor 10 1988 Page 1 of surface.c

ey

{ fioat mag.s.b.c;
a=’x
._V:

mag = A*a+b*htcte:

mag = (foatisqrt({double)mag):
*x = a / mag:

*y = b / mag:

*:1 = ¢ [/ nng:

float getx(i)
it i
{ Hoat x:
x = incre *(Boat)i:
X X < start:

returuy X

}
float signioid(y)
float y:

retury{ 1.0/(1.0 + (Hoat)exp({—(dounble)(y}))):

cort square (x)

flunt x:

{ float v:
y=x"'x
return y :)

f#defiue a -2,

float the function(x.y)
float x.y:
{ foat err.erri.err.ered.eerd err5 et

erel
orr2
173
errd
errh
[£ 1)

W

voturn (2 * err):

)
deavwfloor()
{ color {BLUE):

22:15 Nov 30 1988

normal-drawfloor(surface.c)

170

square(sigmoid(1.) — sigmoid(L.+ plx * x + ply * ¥)): 200
square{sigmoid(1.) = sigmoid(1.+ p2x * x + p2y * ¥)k

syuars{signioid(1.) — sigmoid{1.+ pdx * x 4+ p3y * ¥k

synare{signmoid{—=1.) - sigmotd(1.4 pix * x + pdy ¢ M1

synare({sigmoid(—1.) ~ sigmoid(1.+ p5x * x + pSy * ¥k

squars{sigmonl{ —~1.) — sigmoid{1.+ ptx * x + péy * ¥}

et = errl 4+ ert2 4 errd + errd & erth 4 ertd:

drawfloor

U0

Pagc { of serface.c

——

drawfloor-screen_two(surface.c)

color{ CYAN):
move{=3..=5..0.):
draw(=5.5..0.}:
draw(5..5..0.):
draw(5..-5..0.):
deaw(=5..=5..0.):

move({-6..0..0.);
draw(4..0..0.):

move{0..-6..0.);
draw(0..6..0.):

move{0..0..~2.):
draw(0..0.,5.);

emov(8.01.0..0.):chamte(*X*"):
cmov(0..6.01,0.):chamtr(*Y"):
cemon(0.,0..6.01):charste(*2"):

}

findmax(array)

f#dofine loopi(ON) for(i=0:i<ON:i++)
#define loopj(ON) for(j=0;j<ON:j++)
#define loopk(ON) for(k=0:k<ON:k++)

float array{Jsize}:
{ imt ij.k:
int maxi=0.maxj=0:
int mini=0.minj=0:
min = areay(0][0}:
max = array(0:
loopi(size){
loopj(nize){ if (arrayj]{il< min) min=array[j]{i);

if (array[j]fi]> max) max=array(j]fi]:
} printf (*%2 %£ \a".max.min):
)

screen _one()

{

ortho{0.0.(Boat) XM AXSCREEN.0.0 (foat)YMAXSCREEN.~1.0.1.0):

sl Jepth(0x000.0x F00):

viewport (0.(int)(1023.*viden).0 (int)(787.*video)):
peespective(150.1.0.2.0,-2.0);
jookat(2..0.,50..0..0..0..0.9);

)
screen_two()
{ int i
foat left right.iop.hottom:
Iefi= ~Ll.:right = 5.:bottomn = ~l.:top = 5.;

22:15 Nor 30 1983

o

findinax

240

%0

screen_one

20
screen_two

Page 5 of sarfacc.c

e oy . S an.. AN

——

screen_two—acreen_three(surface.c)

ortho2(lefi right .bottom.top):
evrsoff().
color{ 10UY);
viewport((iut }(T00.* video) (1t (N . " viden)
(it)(500.* video). (it)(700.*video)):

clear():
coloe{ YELLOW):
for{i= —=3i<Lii++)
move2(lefi):draw2(right.i):
iz =3 Jhid+)
move2(i.hottom):draw?2(i.top):

color{ BLUE);
enov2{pix.ply)ichamir(en):
cmov2(p2x.p2y)ichaeatr(*e”):
emov. (pdx.pdy Jicharate("e”);

colos{ BLACK): 280
cmnv2(pdx.pdy):icharste("e"):
emov2(pix.phy)icharste(" o*);
cmov2{ p8x.p8y):ichamtr(s");

colos{7):

move2(0.0.-~0.5/w2):

draw(5000.,(—(w1/w2*5000.) ~ 0.5/w2)):

move2;0.0.-0.5/w2):

draw{~-5000..((w1/w2°5000.) ~ 0.5/w2)):

“w
-1
2

curson():

screen_three() screen_three

ortho2(0.,1023. *video,0,757. *video);
viewport(0,(int)(1023.*videv),0,(int)(767.*video)):

22:15 Nor 30 1938 Page 6 of surfacc.c

S
i

Bibliography

1. Barmore Gary Speech Recognition Using Neural Nets and Dynamic Time Warp-
ing. MS thesis, AFIT/GEO/ENG/88D-1. Air Force Institute of Technology
(AU), December 1988 (AD-A177598).

2. Baum, Eric B. “On the Capabilities of Multilayer Perceptrons” AIP Conference
Proceedings 151: Neural Networks for Compuiing 53-58 (1986)

3. Baum, Eric B. “Supervised l.ecining of Probability Distributions by Neural
Networks® AIP Ce=fcrence Proceedings: NeuralNetworks for Computing 1-8
(1987)

4. Born M., Wolf E. Principles of Optics 2nd rev. ed. MacMillan, New York (1964).

5. Caudill, Maureen. “Neural Networks Primer”, Al Ezpert, 47-52 (December
1987).

6. DeSieno Duane, Adding a Conscience to Competitive Learning, IEEE ICNN
(1988)

7. Grossberg, S. The Adaptive Bruin: Cognition, Learning, Reinforcement, and
Rhythm. Amsterdam: Elsevier (1986)

8. Hamacher, Carl V. and others. Computer Organization. New York: McGraw-
Hill Book Company, (1984)

9. Hopfield J.J. “Computing with Neural Circuits: A Model” Science, 233: 625-633
(August 1986)

10. Huang, W. Y. and Lippmann, R. P. “Neural Net and Traditional Classifiers”,
Proceeding of the Conference on Neural Information Processing Systems. Denver
{November 1987)

11. Hecht-Nielsen, Robert Counter Propagation Networks IEEE ICNN (1987)

12. Kohonen T. Self-Organization and Associative Memory. (Second Edition)
Berlin: Springer-Verlag Series In Information Sciences, (1987)

13. Kohonen T. “Automatic Formation of Topological Maps of Patterns in a Self-
Organizing System” Proc. 2nd Scand.Conf. on [mage Analysis 214-220 (June
1981).

14. Kuczdwski, Robe.t M.Ezploration of Backward Error Propagation as a Self-
Organization Sturcture IEEE ICNN (1987)

15. Kung S.Y.,An Algebraic Projection Analysis for Optimal Hidden Units Size and
Learning Rates in Backpropagation Learning IEEE ICNN (1987)

16. Lippmann,Richard P. “An Introduction to Computing with Neural Nets”, JEEE
ASSP Magazine. 4-22 (April 1987)

17.
18.

19.

21.

24.
25.

26.

Ruck, D. W. Multisensor Target Detection and Classification. MS thesis,
AFIT/GE/ENG/86D-20. Air Force Institute of Technology (AU), December
1986 (AD-A177598).

Roggemann, M. Personal Conversation and Papers (August 1988)

Se,nowski Terrence J. “Analysis of Hidden Units in a Layerad Network Trained
to Classify Sonar Targets” Neural Networks, (January 1988)

. Sietsma, Jocelyn “Neural Net Pruning - Why and How” Proceedings of the IEEE

Internutional Conference on Neural Netrorks (1988)
Sun, G.Z. “A Novel Net That Learns Sequential Decision Process” AIP Proceed-
ings, (1986).

Stright James R. A Neural Network Implementation of Chaotic Time Series
Prediction. MS thesis, AFIT/GE/ENG/88D-50. Air Force Institute of Technol-
ogy (AU), December 1988 (AD-A177598).

Troxel, Steven E. Positivn, Scale, and Rotation Invariant Target Recognition
Using Range Imagery. MS thesis, AFIT/GE/ENG/86D-20. School of Engineer-
ing, Air Force Institute of Technology (AU),Wright-Patterson AFB OH, De-
cember 1986 (AD- A177598).

Valiant L.G. “Learning Disjunctions of Conjunctions” Proceedings of the Ninth
International Conference on Artificial Intelligence. (1983)

Werbos, P. Beyond Regression: New Tools for Prediction and Analysis in the
Behavioral Sciences Harvard University Dissertation. 1974

Woods, D. Back and Counter propagation Aberrations IEEE ICNN (1987)

91

Vita

Captain Gregory L. Tarr ”

=apt Tarr entered the Air Force in December of 1978 as an Aerospace Ground

Equipment Technician. After serving two years at Castle AFB, California with the
84th Fighter-Interceptor Squadron, he entered the Airman’s Education and Com-

missioning Program completing a Bachelor of Science in Electrical Engineering at
the University of Arizona in December 1983. Capt Tarr serverd three year with the
Aeronautical Systems Division at Wright-Patterson AFB, Ohio before entering the
School of Engineering, Air Force Institute of Technology in June 1987. -

e ——
p—

M’]I((:E(RN(:(BSI)—M
] NAME OF PERFORMING ORGANIZATION

m
6b. OFFICE SYMBOL
OF spplicable)

7a. NAME OF MONITORING ORGANIZATION

AFIT/ENG

' Ll L]
Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188
a [CLASSIFICA 1b. RESTRICTIVE MARKINGS
- [as TION 3, DBTRBUTION/ AVAIABILITY OF REPORT
75, OECLASSIFICATION / DOWNGRADING SCHEDULE Approved lor public release;
distribution unlimited
ORGANIZATION RE NUMBER(S) §. MONITORING ORGANIZATION REPORT NUMBEAR(S)

l 2P Code)
p

Air Force Institute of Technology
re > o [.

[T OF FUNODING / SPONSORING

ORGANIZATION

{City, State, an 2P Codle)

9. PROCUREMENT INSTRUMENT IDENTIHCATION NUMBER

————— —
8c. ADORESS (City, State, and 2¥ Code)

Wright-Patterson AFI3 Ol 15433

S ——
10. SOURCE OF FUNDING NUMBERS

pP————
PROJECT TASK
NO.

PROGRAM
CLEMENT NO. NO.

WORK UNIT
ACCESSION NO.

Dynamic Analysis of Feedforward Neural Networks Using Sinmlated and Measured Data

s S ———
12. PERSONAL AUTHOR(S)

1

138

REPORT

13b. TIME COVERED
FROM

P16 suPPLEMENTARY NOTATION

T0

S
18. DATE OF REPORT (Your, Month, Day)

el Deceniber

1S. PAGE COUNT
l,a l

17. COsATI CODES

usuucrnmtmmm#mwmummﬂ

‘ LD GROUP SUS-GROUP

Artificial Neusal Networks

Pattern Hecoguition

1& U

19.mM(mmm?m

Artificial Intelligence

by block number)

Thoesis Advisor: Steven K. Rogers. Capt. USAF
Associate Prolessor of Electricial Engincering

"

eSS
‘:'\c‘ “"‘:;,Jf§’A
)

o;"" \0&'\
el

20. DISTRIBUTION / AVARLABIUITY OF ASSTRACT

21. ABSTRACT SECUNITY CLASSIFICATION

L_Ounaassmeonunumrio X same as aer. O one uses INCLASSIFIE
225 NAME OF RESPONSISLE NDIVIDUAL 22b. TELEPHONE (inchude Area Code) | 22¢. OFFICE SYMBOL
AT ant LSAF L313) 255-6027 AELLENG
DD Form 1473, JUN 88 Previous editions are cbsolete. Tuig »
UNCLASSIFIED

ie

W it

ABSTRACT

An cnviromment ia developed for the study of dynamic changes in patterns of
weight and node values for artificial neurai networks, Graphic representations of
nenral network internal states are displayed using a high resolution video terminal.
Patterns of node firings and chonges in weight vectors are displayed o peovide iu-
sight during training. Four pattern recoguition problems are applied to four types
of artificial neural nefworks. Using simulated data, a simple disjoint region classi-
fication problem is developed and examined using a Kolhonen uct and a multilayer

feelforward back propagation (MFB) nctwork.

A MFB neural network is also used to sinwlate a Fourier filter. Using a Kolo-
nen net, a MFB, a counterpropagation and a hybrid network, data measured from
infrared and lascr radar imagery of military vehicles is analyzed. The accuracy aud
training Limes for a MFDB net and a lybrid net are compared using an ambiguons
decision region problem. Each classification problem is examined and compared to
ciassical, nearest neighbor pattern recognition techniques. Usiug dynamic analysis,
neural network praning is used to determine optimum node coufigurations. A hybrid
neural network is developed using Kolionen training rules for the first hidden layer
followed by one or two hidden Jayers using standard hack propagation rules for train-
ing. Advantage of the livbrid uetwork is shown for classification probles iuvolving
anomalies cliaracteristic of measured data. The Hybrid network requires less train-

ing aud fewer intercounections than MFB when classificatious involves ambignous

devision regions.

